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Reinforcement learning: basic setting

Examples (preview)


Some preliminaries 
   delayed rewards

   model-based vs model-free

   stochastic environments


Policy gradient

Q-learning

Actor-critic (briefly)
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Supervised learning vs

reinforcement learning



teacher
(smart)

student
(imitates teacher)

“Supervised learning”

final level limited by teacher

!
!

(most neural network applications)



student/scientist
(tries out things)

“Reinforcement learning”

?

?

?

final level: unlimited (?)



Reinforcement learning:

The basic setting
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…may be delayed!



agent

environmentreward
…may be delayed!
…depends on behaviour of 
environment



Reinforcement learning: 
Discover strategies ('policies') =
actions in response to observations, 
maximizing rewards



observation

RL-environmentRL-agent

action

“policy”
state    action



Examples

(preview)



Cartpole (balancing)

state = angle and velocity of pendulum
action = acceleration of cart
reward = height of mass on pendulum



Solving a fixed maze with fixed target, starting from 
random location

state = location of robot
action = move
reward depends on number of time steps until target



Solving a random maze, starting from random location

state = image of whole maze, including robot & target
action = move
reward depends on number of time steps until target



Solving a fixed or random maze, observing only  
close-by surroundings

observed state = image of surroundings
action = move
agent needs memory for good strategy!



Playing video games

observed state = screen image
action = move player spaceship
reward = high-score



Playing board games

observed state = board
action = make allowed game move
reward = 1,0,-1 at end, depending on win/draw/lose
environment includes opponent



observation

RL-environment

neural
network

RL-agent

action

measurements

control

(open) 
Q system

quantum 
feedback!

Feedback-based quantum control



observation

RL-environmentRL-agent

driveaction

cavity

Feedback-based quantum control



observation

RL-environmentRL-agent

driveaction

Feedback-based quantum control



observation

RL-environmentRL-agent

driveaction

Feedback-based quantum control



observation

RL-environmentRL-agent

driveaction

Feedback-based quantum control



observation

RL-environmentRL-agent

driveaction

Feedback-based quantum control
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therefore does not rely on a teacher, it often achieves
super-human performance in situations where such a com-
parison can be made.

In recent years, RL has also been proposed for several
problems in the field of quantum computing. Examples
include quantum phase estimation [28], the design of quan-
tum experiments [29], quantum control [30–33], quantum
error correction [34–37] (alongside other machine learning
approaches [38–41]), and quantum metrology [42, 43].

In this work, we introduce deep reinforcement learning
for quantum circuit optimization. Our approach enables
the computer to autonomously discover strategies for
reducing the depth and gate count of quantum circuits,
for arbitrary gate sets and connectivity. It allows to choose
the optimization target at will and permits extrapolation
of the discovered strategy to larger circuits. Due to its
flexibility and generality, the RL approach proposed here
has the potential to become a valuable component of the
toolbox needed to unlock the power of NISQ devices in
the near future.

II. TECHNIQUE

A. Quantum circuit optimization as reinforcement
learning problem

The goal of RL is to discover strategies for decision-
making problems. This is described by an “agent” inter-
acting with the rest of the world, the “environment”. In
several rounds, the agent receives information from the
environment and, in response to this observation, chooses
an action which alters the state of the environment. The
agent is supposed to adapt its strategy so as to maximize
a success measure, the “reward”. More information is
provided in Sec. II C.
In the spirit of previous RL applications to quantum

problems [28, 30–34, 42, 43], the obvious approach seems
to let the agent build a circuit gate by gate to implement
a certain target operation. However, this would come
with two central problems here. First, it is extremely un-
likely to find a suitable circuit by chance, so an untrained
agent would in practice probably never see a positive
reward signal. This problem is exacerbated by the fact
that the gate set is typically not discrete, but gates can
depend on continuous parameters. Second, in the par-
ticularly interesting quantum supremacy regime where
the circuit cannot be simulated on a classical computer,
there is the problem that even if one had found a valid
circuit, verifying its correctness would be very hard and
computationally expensive. Note that some tools like ZX
calculus promise to arrive at a statement in polynomial
time, but with the two possible results being positive or
inconclusive whether two circuits are equivalent.
Therefore, we follow a di↵erent strategy that appears

more promising: In QCO, it is common to start from a
complete and correct, but typically ine�cient circuit, and
to progressively optimize it by applying a sequence of

a

b

c

Figure 1. Overview. a) Diagram representation for quantum
circuits. Each qubit is indicated with one line. The colored
symbols represent operations (gates) on these qubits, with
time increasing to the right. b) Quantum circuit optimiza-
tion. For a given circuit, we aim to find a logically equivalent,
but more e�cient representation. c) Our reinforcement learn-
ing approach to quantum circuit optimization. Based on a
diagram-like representation of the circuit, the agent, realized
by a neural network, can choose between several circuit trans-
formations to generate another, logically equivalent circuit;
this process is repeated multiple times.

circuit transformations. However, it can be a formidable
challenge to appropriately choose these transformations,
and we make this decision the task of our agent. From the
RL perspective, this means that the states are the circuits
and the actions are the circuit transformations. By design,
this approach immediately solves the challenge to finish
with a correct, i. e., logically equivalent, circuit: we can
preserve this property for the full process by allowing in
each step only equivalence transformations. In addition,
our approach is also scalable, i. e., it allows us to operate
in the quantum supremacy regime: it is su�cient to verify
equivalence for the few operations directly involved in
an elementary circuit transformation, which is relatively
cheap as long as all operations act only on a limited
number of qubits.

Our general goal is to use RL to train a multi-purpose
agent which afterwards will be able to optimize a wide
class of circuits based on one given hardware architecture,
without going through the RL procedure again in each

More abstract: modifying quantum circuits

state = whole quantum circuit
action = transformation (changing gates)
reward = e.g. whether circuit becomes shorter



Delayed rewards:


discounting,

greedy vs non-greedy

Preliminaries



Adding up rewards and discounting

R =
T

∑
t=1

rt

"return"
"reward" at time step t(sum of rewards)

We want to optimize the "return"!

(if the states are independent of the actions and the 
reward does not depend on the previous actions/

states, this becomes supervised learning again)

("instantaneous")



Adding up rewards and discounting

Rt =
T

∑
t′ =t

rt′ 

(partial, future) 
"return"

"reward" at time step t’starting at time t

Can choose action at time t to optimize this instead 
of full R: this is equivalent, since 

former rewards do not depend on future actions!



Adding up rewards and discounting

Rt =
T

∑
t′ =t

rt′ 
γt′ −t

discounted future "return"
"reward" at time step t’starting at time t

- prioritize sooner rewards over later rewards

"discounting factor"

- easier to optimize, but becomes "greedy" !

γ < 1



Adding up rewards and discounting

reward r

time t



Adding up rewards and discounting

reward r

time t

reward r

time t

?



Adding up rewards and discounting

reward r

time t

reward r

time t



Adding up rewards and discounting

reward r

time t

reward r

time t

preferred by 
"greedy" strategy

preferred by optimal 
(non-greedy) strategy

γ ≪ 1 γ = 1



Model-based vs model-free

reinforcement learning

Preliminaries



R = R(U(a))

Return depends on environment dynamics

dynamics of environment

action (at some
early time)



R = R(U(a))

Return depends on environment dynamics

dynamics of environment

action (at some
early time)

∂R
∂a

=
∂R
∂U

∂U
∂a

if model of environment is known:  
use gradient descent with



R = R(U(a))
Return depends on environment dynamics

∂R
∂a

=
∂R
∂U

∂U
∂a

model-based reinforcement learning

example in quantum physics: 'GRAPE'



R = R(U(a))
Return depends on environment dynamics

model-based reinforcement learning

for discrete actions: tree search



R = R(U(a))

dynamics of environment

action (at some
early time)

What do we do if we do not know any
model of the environment?

[or we do not want to adapt our algorithm 
to that particular model]



Q(a) = R(U(a))

R̄ = ∑
a

R(U(a))P(a)

Essential idea: we have to try out many action sequences 
and see what happens (learn when the return is high)

Two basic approaches

(1) try out 'all' actions, make a table of R values, 
finally pick action with largest expected R

"Q learning"

(2) try actions stochastically, change action 
probabilities P(a) to optimize average R

"policy gradient"

model-free reinforcement learning (these lectures)



Exploration/exploitation tradeoff

RL algorithms do not try all possible policies, 
but try to already use what they have learned so far 
to quickly come closer to the best policy 
 
Danger: get stuck early in sub-optimal choices 

Need to balance:
 
Exploitation = use what you have learned 
Exploration = try something new

may introduce extra randomness for exploration



Stochastic environments:


Markov decision process

Preliminaries



P (s0|s, a)Transition function:

State of the environment: s

Probability of going to state s’ given that we were in 
state s and took action a

(could be deterministic: P=1 or 0)

"Markov decision process": Markov process (no memory) 
with decisions (actions based on states)

s

s′ 



"what if the environment has memory"?

expand state space to include that memory,
going back to a Markov description

"what if the agent can only observe part of the state"?

simple approach: constrain allowable policies 
(action choices) to depend only on that part 
of the state

note: deterministic, Markovian dynamics on the 
full state space can lead to non-deterministic, non-
Markovian dynamics on a restricted state space



Overview: 
Model-free reinforcement learning


Learn action probabilities (policy gradient)

Learn expected returns (Q learning) 
Learn both together (actor-critic)



Policy gradient




state = position x,y 
(or full map/image)

action = move (direction)



state = position x,y 
(or full map/image)

action = move (direction)

reward for picking up a box



Policy Gradient

Policy gradient = REINFORCE (Williams 1992):  A 
simple model-free general reinforcement learning 
technique

Basic idea: Use probabilistic 
action choice. If the return 
at the end turns out to be high, 
make all the actions in this 
sequence more likely 
(otherwise do the opposite)

This will also sometimes reinforce ‘bad’ actions, 
but since they occur more likely in trajectories 
with low reward, the net effect will still be to 
suppress them!



observation

RL-environmentRL-agent

action

“policy”
state    action

Policy: ⇡✓(at|st) – probability to pick action
given observed state 

at
st

at time t



Policy Gradient

⇡✓(a|s)
down
up
left
right

0.1
0.6
0.2
0.1

action a probability

state s action probabilities

policy



Policy Gradient

⇡✓(a|s)
down
up
left
right

0.1
0.6
0.2
0.1

action a probability

state s action probabilities

Environment: makes (possibly stochastic) transition 
to a new state s’

P (s0|s, a)Transition function:

policy



Policy Gradient

Probability for having a certain trajectory of actions 
and states: product over time steps

a = a0, a1, a2, . . .
s = s1, s2, . . .

trajectory: ⌧ = (a, s)

P✓(⌧) = ⇧tP (st+1|st, at)⇡✓(at|st)

s0
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Policy Gradient

Expected cumulative reward (='return'): 
sum over all trajectories

return for this sequence (sum 
over individual rewards r for all 
times)

R̄ = E[R] =

@R̄

@✓
=?

Try to maximize expected return by changing 
parameters of policy:

sum over all actions at all 
times and over all states at all 
times >0

X

⌧

P✓(⌧)R(⌧)

X

⌧

. . . =
X

a0,a1,a2,...,s1,s2,...

. . .



The logarithmic gradient trick

E[Xθ(s)] = ∑
s

Pθ(s)Xθ(s)

∂
∂θ

Pθ(s) = Pθ(s)
∂
∂θ Pθ(s)

Pθ(s)
= Pθ(s)

∂ ln Pθ(s)
∂θ

∂E[Xθ(s)]
∂θ

= E[
∂ ln Pθ(s)

∂θ
Xθ(s)] + E[

∂Xθ(s)
∂θ

]

Problem: gradient with respect to parameter also 
acts on probability! Can we rewrite result as E[…]?



Policy Gradient

@ ln⇡✓(at|st)
@✓

@R̄

@✓
=

X

t

X

⌧

R(⌧)
@⇡✓(at|st)

@✓

1

⇡✓(at|st)
⇧t0P (st0+1|st0 , at0)⇡✓(at0 |st0)

R̄ = E[R] =
X

⌧

P✓(⌧)R(⌧)

@R̄

@✓
=?

P✓(⌧) = ⇧tP (st+1|st, at)⇡✓(at|st)
Derivative only acts on policy! (model-free!)

Pθ(τ)



Policy Gradient

@R̄

@✓
=

X

t

E[R
@ ln⇡✓(at|st)

@✓
]

�✓ = ⌘
@R̄

@✓

Main formula of policy gradient method:

E[. . .]

Stochastic gradient descent:

where is approximated via the
value for one trajectory (or a batch)

@ ln⇡✓(at|st)
@✓

@R̄

@✓
=

X

t

X

⌧

R(⌧)
@⇡✓(at|st)

@✓

1

⇡✓(at|st)
⇧t0P (st0+1|st0 , at0)⇡✓(at0 |st0)

Pθ(τ)



Policy Gradient

Increase the probability of all action choices in the
given sequence, depending on size of return R.

Even if R>0 always, due to normalization of probabilities 
this will tend to suppress the action choices in 
sequences with lower-than-average returns.

@R̄

@✓
=

X

t

E[R
@ ln⇡✓(at|st)

@✓
]



Policy gradient:

The random walker toy example




The simplest RL example ever

random walker

+1: "up"

-1: "down"

…

…

state = location
observed state = nothing (robot is blind)



The simplest RL example ever

A random walk, where the probability to go “up” is 
determined by the policy, and where the return is 
given by the final position

(Note: this policy does not even depend on the current state)

re
tr

un
 R

time step

po
si

tio
n 

x
R = x(N)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

0 N



The simplest RL example ever

⇡✓(up) =
1

1 + e�✓
policy

�✓ = ⌘
X

t

⌧
R
@ ln⇡✓(at)

@✓

�
RL update

at = up or down

(Note: this policy does not even depend on the current state)

A random walk, where the probability to go “up” is 
determined by the policy, and where the return is 
given by the final position R = x(N)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



The simplest RL example ever

return:

RL update:

= Nup �Ndown = 2Nup �N

*
R
X

t

@ ln⇡✓(at)

@✓

+
= 2

⌧
(Nup � N

2
)(Nup � N̄up)

�

(general analytical expression for 
average update, rare)

= 2VarNup = 2N⇡✓(up)(1� ⇡✓(up))

X

t

@ ln⇡✓(at)

@✓
= Nup �N⇡✓(up)

N=number of time steps

logarithmic gradients:

R = x(N)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



⇡✓(up)

⇡
✓
(u
p
)(
1
�
⇡
✓
(u
p
))

The simplest RL example ever

RL update for    as a function of "up"-probability✓
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

probability to go up always increases (good!)

�
✓
⇠
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pr
ob

ab
ilit

y

training batch

batch size 16

The simplest RL example ever
⇡
✓
(u
p
)

Can also analyze: spread of update step,
improvement via "baseline" R 7! R� b

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(see later)



Policy gradient:

The walker/target toy example




The second-simplest RL example

actions: move or stay

walker/target



The second-simplest RL example

po
si

tio
n

time

“target site”

“walker”

return R = number of time steps on target

actions: move or stay

walker/target



The second-simplest RL example

actions: move or stay

walker/target

observed state = 1 when on target

= 0 when off target

state = location of robot and location of target (is random)

⇡✓(1|0)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

"move when not on target"
etc.

policy:



t

"Walker/target": evolution during training

x
initial well-trained

(note: location of target is chosen randomly
during training, but here we display only trajectories
for one fixed target location)



⇡✓(1|0)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇡
✓
(0
|1
)
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ideal
strategy

"Walker/target": evolution during training

"move when not on target"

"s
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y 
w
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n 
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 t
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Reinforcement learning: 
Discover strategies ('policies') =
actions in response to observations, 
maximizing rewards



Reinforcement learning: basic setting

Examples (preview)

Some preliminaries

Policy gradient

   basics

   toy examples

   with neural networks

   first quantum physics example

   AlphaGo

Q-learning

   basics

   example: video games

Actor-critic (briefly)



Quick recap: policy gradient




observation

RL-environmentRL-agent

action

“policy”
state    action

Policy: ⇡✓(at|st) – probability to pick action
given observed state 

at
st

at time t



Policy Gradient

Probability for having a certain trajectory of actions 
and states: product over time steps

a = a0, a1, a2, . . .
s = s1, s2, . . .

trajectory: ⌧ = (a, s)

P✓(⌧) = ⇧tP (st+1|st, at)⇡✓(at|st)

s0
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Policy Gradient

Increase the probability of all action choices in the
given sequence, depending on size of return R.

@R̄

@✓
=

X

t

E[R
@ ln⇡✓(at|st)

@✓
]Δθ ∼

depends on particular trajectory τ



⇡✓(1|0)
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⇡
✓
(0
|1
)
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ideal
strategy

"Walker/target": evolution during training

"move when not on target"

"s
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w
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Policy gradient with 
a neural network




treat high-dimensional inputs:
- images
- time-series (measurements, sentences, …)

exploit underlying structure in data 
(such that we do not need to sample too much!)

Motivations for using neural networks:

treat high-dimensional outputs:
- e.g. placing a stone in a board game
- many control degrees of freedom in physics



output = action probabilities (softmax)

⇡✓(a|s)

input = s

policy
via a (deep) neural network

Policy via neural network

(can be high-dimensional, e.g. picture)

action 1 2 3



output = action probabilities (softmax)

⇡✓(a|s)

a=0 ("stay") a=1 ("move")

input = s = "are we on target"? (0/1)

policy via a neural network

"Walker/target": neural network version



Policy gradient: all the steps

execute action (evolve environment),
record new state (& reward)

apply neural network to state,
thus obtain action probabilities

from probabilities, sample
action for next step

Obtain one "trajectory":



Policy gradient: all the steps

Do one trajectory

Obtain overall sum of rewards (=return)
for each trajectory

apply policy gradient training
(enhance probabilities for all

actions in a high-return trajectory)

For each trajectory:

(in reality: a batch of trajectories)



categorical cross-entropy trick

output = action 
probabilities (softmax)

⇡✓(a|s)

a=0 a=1 a=2

input = state

C = �
X

a

P (a) ln⇡✓(a|s)

P (a) = R

P (a) = 0

Set

for a=action that was taken

for all other actions a

�✓ = �⌘
@C

@✓
implements policy gradient

categorical cross-entropy

desired 
distribution

distr. from net



Policy gradient:  

first quantum physics 

example




observation

RL-environment

neural
network

RL-agent

action

Quantum physics example: Quantum feedback



observation

RL-environmentRL-agent

Quantum physics example: Quantum feedback

driveaction

cavity, driven, with readout
goal? e.g. stabilize state

cavity



(measurement trace for last N time steps)

Input

Output

action probabilities
displacement



(measurement trace for last N time steps)

Input

Output

action probabilities

Kerr

displacement



msmt trace (weak QND photon number msmt)

displacement drive

Fock state 1 probability
0%

100%

epoch



displacement drive

training epochs

tim
e

state 1 probability
ca. 50%

tim
e

training epochs

400

400

50

50

0

0

(100 trajectories per epoch)



Research-level example:  
state preparation via

nonlinear measurements

of a cavity



Deep Reinforcement Learning for Quantum State Preparation with Weak Nonlinear Measurements, 
R. Porotti, A. Essig, B. Huard, and F. Marquardt; arXiv: 2107.08816

2

n = 1
n = 2

n = 0

Quantum
System

Linear 
Control

Nonlinear
Measurements

Agent

a

n

cb

FIG. 1. Reinforcement learning for discovering feedback con-
trol based on continuous measurements. a) A neural-network-
based agent can find a strategy to control a quantum sys-
tem, compensating for simple (linear) controls by extract-
ing information from advanced (nonlinear) measurements. b)
Schematics of the model considered in the main text (see [36]):
a qubit is illuminated with multiple frequencies in order to
probe the number of photons n in a coupled cavity. The
information can be extracted by observing the reflected radi-
ation in each of the channels. The reduction in amplitude in
the outgoing wave indicates detection of the Fock state cor-
responding to the respective channel. c) Timetraces of the
quadrature signal observed in the homodyne measurement
channels of Eq. 5. In this particular example, the cavity state
decays at an intermediate time.

of fidelity, provided the control is expanded to include
adaptive measurement rates.

II. PHYSICAL SYSTEM

Measurement-based feedback for quantum physics, us-
ing digital controllers, dates back to 2011 with a pio-
neering experiment that demonstrated the stabilization
of a Fock state in a microwave cavity using the infor-
mation extracted by interacting flying circular Rydberg
atoms [37]. Each circular Rydberg atom encodes one
bit of information about the number of photons in the
cavity. From the extracted information, a classical con-
troller computes the density matrix of the cavity in real
time. It can then react in one of two ways. Either it
sends a resonant atom that can add or subtract a photon
to the cavity [38, 39], or it sends a classical microwave
drive whose amplitude is chosen to displace the cavity
state in an optimal way [37]. The latter case makes a
fascinating use of quantum measurement backaction as
it is the combined e↵ect of a classical drive and quantum
measurement that steers the cavity towards the targeted
Fock state.

Several experiments with Rydberg atoms or supercon-
ducting circuits have by now been realized to count the
number of photons in a microwave resonator [40–43], en-
abling them in principle to implement quantum feedback
strategies of this sort.

The present work is heavily inspired by a recent imple-
mentation [36] demonstrated a way to acquire informa-
tion about the number of photons in a resonator in a con-
tinuous manner. It exploits a qubit, coupled to both the
cavity and a measurement transmission line, driven by
multiple frequencies simultaneously, each of which is sen-
sitive (via dispersive qubit-cavity coupling) to one Fock
state. To each number of photons n in the storage mode
is associated one outgoing mode of the transmission line
at frequency fn. If we change the reference frame by
displacing the outgoing modes by the opposite of the
input coherent state, we can say that a single mode is
excited and all the non-resonant modes are in the vac-
uum state. Therefore, Fock states |ni correspond to all
outgoing modes in the vacuum state, except the one at
frequency fn.
We model this physical system as shown in Fig. 1b.

That figure represents a cavity, subject to a continuous
weak measurement which reveals the Fock state num-
ber at any given moment in time. This works by reading
out multiple measurement channels in parallel, where the
signal in channel n will assume a di↵erent average value
whenever the cavity is in Fock state |ni, as described be-
fore. In presence of a pure Fock state, without noise,
only one signal would be excited to 1 and the others to
0, resulting for example in (0,1,0...,0) for state |1i. This
measurement introduces an unavoidable intrinsic fluctu-
ating back-action but also tries to localize the system into
some random Fock state according to the Born rule - not
necessarily the desired target state. Any kind of con-
trol must both counteract and exploit these tendencies
introduced by the measurement [38].

III. MODEL

Apart from drive and decay (which we will introduce
later), the Hamiltonian of the cavity subject to the Fock
state QND measurement can be expressed as

Ĥmeas =
X

n

�nâ
†
n
ânP̂n, (1)

where P̂n = |ni hn| is the projector on Fock state n of
the cavity and we have switched to a frame rotating at
the cavity resonance frequency. We will choose �n = 1
for all n from now on. The mode ân refers to the n-th
measurement channel, which will be monitored to assess
the cavity state, and which can be treated like a driven,
decaying bosonic mode. At this stage of the e↵ective de-
scription, we have already eliminated the qubit which is
coupled to the cavity and which provides the nonlinearity
needed for the Fock state measurement. When a homo-
dyne measurement is performed on the phase quadrature
of any of the measurement channels, the resulting evolu-
tion of the cavity’s reduced density matrix, obtained after
integrating out the measurement channels ân, can be de-
scribed by a stochastic master equation (SME) [4, 44].
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FIG. 4. Preparation of Fock state superpositions, via addi-
tional measurement channel control. a) Example of a trajec-

tory for the |1i+|3ip
2

target state (probability distribution, top,

and drive, bottom). In the four lower plots, the shaded traces
represent the ON-OFF control of the measurement channels
corresponding to Fock states |0i to |3i. The solid lines are
a moving average over 10 timesteps. b) Average fidelities
reached after the training for di↵erent superposition states.
For each case, we show the distribution of final fidelities (white
histogram, obtained from 50 trajectories) and the resulting
average fidelity. Above that panel, we show the compari-
son between the Wigner densities for the target state (top)
and the average state obtained from the strategy (bottom).
Smaller distance between the two states forming the super-
position can yield better results. c) Average Wigner densities
reached by RL, with di↵erent relative phases between state |1i
and |3i. In all cases, we only control the first M measurement
channels, with M = 4.

It encourages the RL agent to find a robust policy that, in
our case, drives the physical system to the desired target
state. In this work, we chose as instantaneous reward
a function of the fidelity F (t), computed between the
current density matrix ⇢̂(t) and the target state ⇢̂target(t):

rt = |F (t)|✓ (8)

where the usual definition of quantum fidelity F (t) =✓
tr

qp
⇢(t)⇢target

p
⇢(t)

�◆2

is used. We introduced an

exponent ✓ > 1 because we want to punish states which
only have a moderately high fidelity (e. g. F (t) = 1/2
when | i = |ni and | targeti =

1p
2
(|ni+ |mi) ) in favour

of states with fidelity much closer to 1. In our numerical
experiments, it turned out that this modified reward was

crucial to the success of the algorithm. Unless otherwise
specified, in the following we will use ✓ = 8. As usual,
the total return R of a trajectory is then the sum of all
instantaneous rewards, i.e. R =

P
t
rt.

As mentioned before, the RL agent is modelled with
a neural network, which is trained in order to maximize
the cumulative reward in a trajectory. We will refer to
the network as Policy Network. In actor-critic RL meth-
ods, such as the one we will be using here, this network
is supplemented by a Value Network, which is used to
predict the expected cumulative reward if one starts in
the current state, serving as a baseline. Specifically, as
our RL approach we decided to use a Proximal Policy
Optimization (PPO) algorithm [45], which is known to
be a modern, general, easy-to-implement and sample-
e�cient variant of policy gradient techniques. This al-
gorithm is closely related to Trust Region Policy Opti-
mization (TRPO) [46] techniques, in the sense that they
rely on updating the current policy according to some
constraints, limiting sudden jumps in the latter (see fig-
ure 2 and the appendix for the general layout of the al-
gorithm). Even though this is a time-dependent control
problem, using recurrent neural networks, i.e. networks
with memory, is not necessary in our approach: know-
ing the quantum state at any time gives the maximum
amount of information that is available and that can pos-
sibly influence the choice of the next action. The output
of the Policy Network, for each action, is a Gaussian dis-
tribution from which the action is extracted. The deep
RL agent, during the training, learns the peak location of
the Gaussian while the standard deviation is kept fixed.
This strategy is useful during the training to explore the
action space, and naturally deals with stochastic environ-
ments, like the one in study. RL techniques for e�cient
control with continuous action spaces are a relatively re-
cent development. For the present work, we perform the
training of the RL agent using the Python library Stable
Baselines [47].

V. RESULTS

Many di↵erent stochastic trajectories (or ”episodes”),
all starting from the ground state | i = |0i, are run in
parallel, then the data are collected, and the two net-
works, the policy and the value neural network, are up-
dated. Unless otherwise specified, in our numerical ex-
periments each trajectory is made up of 1000 timesteps.
At each timestep, the agent inputs the current density
matrix to the policy neural network, it extracts real and
imaginary parts of the displacement, and it applies that
displacement drive to the cavity.
In Fig. 3, we show the main results for our RL agent

that was trained on reaching di↵erent Fock states, from
| targeti = |1i to | targeti = |7i. All of these results
are still in the absence of decay or dephasing, except for
the unavoidable, intrinsic measurement-induced dephas-
ing processes described by the SME. We will later return

ac
tio

ns



Side-note: Continuous actions




input

output: action average  and spread μ σ

continuous action a = μ + σξ
normal-distributed random variable

a

p(a)



A small aside:

baselines


(reducing variance)




Policy Gradient

Increase the probability of all action choices in the
given sequence, depending on size of return R.
Even if R>0 always, due to normalization of probabilities 
this will tend to suppress the action choices in 
sequences with lower-than-average returns.

@R̄

@✓
=

X

t

E[R
@ ln⇡✓(at|st)

@✓
]

@R̄

@✓k
= E[RGk]

Gk =
@ lnP✓(⌧)

@✓k
=

X

t

@ ln⇡✓(at|st)
@✓k

Abbreviation:



Policy Gradient: reward baseline

Challenge: fluctuations of estimate for return gradient 
can be huge. Things improve if one subtracts a constant 
baseline from the return.

@R̄

@✓
=

X

t

E[(R� b)
@ ln⇡✓(at|st)

@✓
]

This is the same as before. Proof:

However, the variance of the fluctuating random 
variable (R-b)G is different, and can be smaller 
(depending on the value of b)!

= E[(R� b)G]

E[Gk] =
X

⌧

P✓(⌧)
@ lnP✓(⌧)

@✓k
=

@

@✓k

X

⌧

P✓(⌧) = 0

E[Gk] =
X

⌧

P✓(⌧)
@ lnP✓(⌧)

@✓k
=

@

@✓k

X

⌧

P✓(⌧) = 0

Note: b can become state-dependent!



Gk =
@ lnP✓(⌧)

@✓k

�✓k = �⌘E[Gk(R� bk)]

bk =
E[G2

kR]

E[G2
k]

Xk = (R� bk)Gk

Var[Xk] = E[X2
k ]� E[Xk]

2 = min

@Var[Xk]

@bk
= 0

Optimal baseline

Optimal baseline:

Define

Minimize



random walker toy example

trajectory (=training episode)

pr
ob

ab
ili

ty

3 learning attempts

strong fluctuations!

(This plot for N=100 time steps in a 
trajectory; eta=0.001)

⇡
✓
(u
p
)



Spread of the update step

Y = Nup � N̄up c = N̄up �N/2 X = (Y + c)Y

p
Var(X)

⇡✓(up)

⇠ N1

⇠ N
3
2

(This plot for N=100)

X=update 
(except 
prefactor of 2)

hXi

(Note: to get Var X, we need central moments 
of binomial distribution up to 4th moment)



Optimal baseline suppresses spread!

Y = Nup � N̄up c = N̄up �N/2 X = (Y + c)Y

p
Var(X)

hXi

⇡✓(up)

⇠ N1

⇠ N
3
2

(This plot for N=100)

X 0 = (Y + c� b)Y b =

⌦
Y 2(Y + c)

↵

hY 2i

with optimal baseline:

p
Var(X 0)



Example:

AlphaGo




AlphaGo

Among the major board games, “Go” was 
not yet played on a superhuman level by any 
program (very large state space on a 19x19 
board!)
alpha-Go beat the world’s best player in 2017



First: try to learn from human expert players

Silver et al.,“Mastering the game of Go with deep neural networks 
and tree search” (Google Deepmind team), Nature, January 2016

AlphaGo



Second: use policy gradient RL on games played 
against previous versions of the program

Silver et al.,“Mastering the game of Go with deep neural networks 
and tree search” (Google Deepmind team), Nature, January 2016

AlphaGo



Silver et al.,“Mastering the game of Go with deep neural networks 
and tree search” (Google Deepmind team), Nature, January 2016

AlphaGo

*Note: beyond policy-
gradient type methods, 
this also includes another
algorithm, called Monte 
Carlo Tree Search



No training on human expert knowledge
– eventually becomes even better!

AlphaGoZero

Silver et al, Nature 2017



Ke Jie stated that "After humanity spent thousands of 
years improving our tactics, computers tell us that humans 
are completely wrong... I would go as far as to say not a 
single human has touched the edge of the truth of Go."

AlphaGoZero



Q-learning




Q-learning

Introduce a quality function Q(s,a) that 
predicts the expected future return for a given 
state s and a given action a. 

Deterministic policy: just select the action with 
the largest Q!

An alternative to the policy gradient approach

Watkins and Dayan 1992





"value" of a state as color V(s) = E[R |s]



"quality" of the action "going up" Q(s, a) = E[R |s, a]



Q-learning

Introduce a quality function Q that predicts the 
future return for a given state s and a given 
action a. Deterministic policy: just select 
the action with the largest Q!

Q(st, at) = E[Rt|st, at]

Rt =
TX

t0=t

rt0�
t0�t

“Discounted” 
future return:

0 < �  1Discount factor:
Reward at time step t: rt

(assuming future 
steps to follow the 
policy!)

How do we obtain Q?

learning somewhat 
easier for smaller 
factor (short 
memory times)

depends on state 
and action at time t

Note: The ‘value’ of a state is V (s) = maxaQ(s, a)



Q-learning: Update rule

Bellmann equation:

Q(st, at) = E[rt + �maxaQ(st+1, a)|st, at]

Q(st, at) = E[Rt|st, at]

Rt =
T

∑
t′ =t

rt′ 
γt′ −t = rt + γRt+1

future return  
using Q-policy

Rt+1



Q-learning: Update rule

Bellmann equation:

In practice, we do not know the Q function yet, so 
we cannot directly use the Bellmann equation. 
However, the following update rule has the correct Q 
function as a fixed point:

Qnew(st, at) = Qold(st, at) + ↵(rt + �maxaQ
old(st+1, a)�Qold(st, at))

will be zero, once 
we have converged 
to the correct Qsmall (<1) update 

factor

If we use a neural network to calculate Q, we have to 
train it to yield the “new” value in each step.

Q(st, at) = E[rt + �maxaQ(st+1, a)|st, at]



"quality" Q(s,a) of the action "going up" as color

state s = location



"quality" Q(s,a) of the action "going up" as color

state s = location



"quality" Q(s,a) of the action "going up" as color

state s = location



Q-learning: Exploration

Initially, Q is arbitrary. It will be bad to follow this Q all 
the time. Therefore, introduce probability       of 
random action (“exploration”)!

✏

✏-greedy“ “

Reduce this randomness later!

Follow Q: “exploitation”
Do something random (new): “exploration”



Q-learning: Experience replay

Store states and actions from past trajectories, revisit 
them, use them to update Q (it has changed in the 
meantime!)

[side-note: it is not possible to re-use states&actions in 
policy gradient (straightforwardly), since these need to 
be sampled according to the current policy, not some 
old policy]



Q-learning:

Example (Atari games)




Example: Learning to play Atari Video Games

last four 84x84 pixel images as input [=state]
motion as output [=action]

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015



“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

Example: Learning to play Atari Video Games



Playing Atari video games, sometimes beyond human level
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Breakout Montezuma’s 
Revenge
(Picture: User neomoonsevin17 
on emuparadise)

“Human-level control through deep reinforcement 
learning”, Mnih et al., Nature, February 2015



Example: Playing Atari video games
neural network observes screen and figures out a 
strategy to win, on its own

e.g. “Breakout” (DeepMind team, 2013)



“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

Example: Learning to play Atari Video Games

t-SNE visualization of 
last hidden layer



Advantage Actor-Critic approaches


(combining Q learning and 
policy gradient)




"value" of a state as color V(s) = E[R |s]



Basic idea (roughly): Learn value function and use it as a 
state-dependent baseline for the return!

"How much is the return for this particular action 
above the average, given the current state?"

"Advantage" 

Rt ↦ At ≡ rt + γV(st+1) − V(st)
less noisy estimate for return

estimated value (learned)

How to learn V?

Δμ ∼ ∑
t

E[{rt + γVμ(st+1) − Vμ(st)}
∂Vμ(st)

∂μ
]

E[At |st, at] = Q(st, at) − V(st)

In policy gradient, replace the return by:



Modern versions:
e.g. TRPO and PPO

Pro tip: Use PPO as a modern allrounder reinforcement 
learning method if you don’t know anything particular 
about your problem

For these more advanced methods, use available RL 
libraries, for example:
"(stable) baselines", "tensorflow agents", …

You just implement the environment and select the 
hyperparameters of the RL approach (and possibly 
provide the agent’s network structure)



Summary:

Advantages & disadvantages 

of model-free RL




Reinforcement learning: Advantages

Discover Feedback Strategies
(beyond GRAPE etc.)

No feedback:   strategies (A #actions N #steps)AN

With feedback:   strategies (M #msmt outcomes)AMN

Model-free

No need to develop/fit/calibrate model/equations for 
dynamics of the world/the device

…can learn on real devices, with all imperfections



RL with deep neural networks: 
Handle arbitrary observations

Need to see many evolutions!

(images, videos, measurement results of any kind, 
sentences, graphs, …)

Reinforcement learning: Challenges

tens of thousands

Cannot discover 'isolated/rare-event' strategies
(also true for any other non-domain-specific algorithm)

Reinforcement learning: Advantages



Reinforcement learning 
for quantum physics




Quantum control

traditional: numerical techniques like GRAPE

new machine-learning techniques:
model-free (implicitly learn model from behaviour)
can easily include feedback
profit from computer science method development



Quantum control
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FIG. 1: (a) Phase diagram of the quantum state prepa-
ration problem for the qubit in Eq. (1) vs. protocol du-
ration T , as determined by the order parameter q(T )
(red) and the maximum possible achievable fidelity Fh(T )
(blue), compared to the variational fidelity Fh(T ) (black,
dashed). Increasing the total protocol time T , we go
from an overconstrained phase I, through a glassy phase
II, to a controllable phase III. (b) Left: the infidelity
landscape is shown schematically (green). Right: the
optimal bang-bang protocol found by the RL agent at
the points (i)–(iii) (red) and the variational protocol [35]

(blue, dashed).

paradigm of multi-starting local gradient optimizers [47].
Unlike these methods, the RL agent progressively learns
to build a model of the optimization landscape in such
a way that the protocols it finds are stable to sampling
noise. In this regard, RL-based approaches are particu-
larly well-suited to work with experimental data [48, 49]
and, unlike many optimal control methods, they do not
require explicit knowledge of local gradients of the con-
trol landscape [35, 45]. This o↵ers a considerable advan-

tage in controlling realistic systems where constructing a
reliable e↵ective model is infeasible, for example due to
disorder or dislocations.
To manipulate the quantum system, our computer

agent constructs piecewise-constant protocols of dura-
tion T by choosing a drive protocol strength hx(t) at
each time t = n�t, n = {0, 1, · · · , T/�t}, with �t the
time-step size. In order to make the agent learn, it is
given a reward for every protocol it constructs – the fi-
delity Fh(T ) = |h ⇤| (T )i|2 for being in the target state
after time T following the protocol hx(t) under unitary

Schrödinger evolution. The goal of the agent is to max-
imize the reward in a series of attempts. Deprived of
any knowledge about the underlying physical model, the
agent collects information about already tried protocols,
based on which it constructs new, improved protocols
through a sophisticated biased sampling algorithm [35].
In realistic applications, one does not have access to in-
finite control fields; for this reason, we restrict to fields
hx(t) 2 [�4, 4], see Fig. 1b. Pontryagin’s maximum prin-
ciple further allows us to focus on bang-bang protocols
(Fig. 1b, red), where hx(t) 2 {±4}, although we verified
that RL also works for quasi-continuous protocols with
many di↵erent steps �hx [35]. Even though there is only
one control field, the space of available protocols grows
exponentially with the inverse step size �t�1.

Control Phases of Constrained Qubit Manipulation.—
To benchmark the application of RL to physics problems,
consider first a two-level system described by

H(t) = �S
z � hx(t)S

x
, (1)

where S
↵, are the spin-1/2 operators. This Hamil-

tonian comprises both integrable many-body and non-
interacting translational invariant systems, such as the
transverse-field Ising model, graphene and topological in-
sulators. The initial | ii and target | ⇤i states are chosen
as the ground states of (1) at hx = �2 and hx = 2, re-
spectively. Although there exists an analytical solution to
solve for the optimal protocol in this case [46], it does not
generalize to non-integrable many-body systems. Thus,
studying this problem using RL serves a two-fold pur-
pose: (i) we benchmark the protocols obtained by the
RL agent demonstrating that, even though RL is a com-
pletely model-free algorithm, it still finds the physically
meaningful solutions by constructing a minimalistic e↵ec-
tive model on-the-fly. The learning process is shown in
this Movie; (ii) We reveal an important novel perspective
on the complexity of quantum state preparation which,
as we show below, generalizes to many-particle systems.

For fixed total ramp time T , the infidelity hx(t) 7!
Ih(T ) = 1 � Fh(T ) represents a “potential landscape”,
the global minimum of which corresponds to the opti-
mal driving protocol. For bang-bang protocols, the prob-
lem of finding the optimal protocol becomes equivalent
to finding the ground state configuration of a classical
Ising model with complicated interactions. We map out
the landscape of local infidelity minima {h↵

x
(t)} using

SD, starting from random bang-bang protocol configu-

Bukov et al PRX 2018 (Mehta group BU)

Bang-bang control (dynamical decoupling)

(training can encounter glassy dynamics)

time

Q learning, table-based



Producing new experimental layouts

A CB D

Fig. 3. Experimental setups frequently used by the PS agent. (A) Local
parity sorter. (B) Nonlocal parity sorter (as discovered by the program).
(C) Nonlocal parity sorter in the Klyshko wave front picture (53), in which
the paths a and d are identical to the paths b and c, respectively. (D) Setup to
increase dimensionality of photons. (A–D) In a simulation of 100 agents, the
highest-weighted subsetups were 11 times experiment A, 22 times experi-
ment B, and 43 times experiment D was part of the highest-weighted sub-
setup. Only in 24 cases were other subsetups the highest weighted.

experiments designed by the basic PS agent (solid blue curve)
and the PS agent with action composition (19) (dashed blue
curve). Action composition allows the agent to construct new
composite actions from useful optical setups (i.e., placing mul-
tiple elements in a fixed configuration), thereby autonomously
enhancing the toolbox (see Projective Simulation for details). It is
a central ingredient for an AI to exhibit even a primitive notion of
creativity (50) and was also used in ref. 12 to augment automated
random search. For comparison, we provide the total number of
interesting experiments obtained by automated random search
with and without action composition (Fig. 2B, solid and dashed
red curves). As we will see later, action composition will allow
for additional insight into the agent’s behavior and helps provide
useful information about quantum optical setups in general. We
found that the PS model discovers significantly more interesting
experiments than both automated random search and automated
random search with action composition (Fig. 2B).

Ingredients for Successful Learning. In general, successful learning
relies on a structure hidden in the task environment (or dataset).
The results presented thus far show that PS is highly successful

CBA

Fig. 4. Exploration space of optical setups. Different setups are represented by vertices with colors specifying an associated SRV [biseparable states are
depicted in blue]. Arrows represent the placing of optical elements. (A) A randomly generated space of optical setups. Here we allow up to 6 elements
on the optical table and a standard toolbox of 30 elements. Large, colored vertices represent interesting experiments. If two nodes share a color, they can
generate a state with the same SRV. Running for 1.6 ⇥ 104 experiments, the graph that is shown here has 45,605 nodes, of which 67 represent interesting
setups. (B) A part of graph A, which demonstrates the nontrivial structure of the network of optical setups. (C) A detailed view of one part of the bigger
network. The depicted colored maze represents an analogy between the task of finding the shortest implementation of an experiment and the task of
navigating in a maze (10, 41, 48, 49). Arrows of different colors represent distinct optical elements that are placed in the experiment. The initial state is
represented by an empty table ?. The shortest path to a setup that produces a state with SRV (3, 3, 2) and (3, 3, 3) is highlighted. Labels along this path
coincide with the labels of the percept clips in Fig. 1B.

in the task of designing new interesting experiments, and here we
elucidate why this should be the case. The following analysis also
sheds light on other settings where we can be confident that RL
techniques can be applied as well.

First, the space of optical setups can be illustrated using a
graph as given in Fig. 4C, where the building of an optical exper-
iment corresponds to a walk on the directed graph. Note that
optical setups that create a certain state are not unique: Two or
more different setups can generate the same quantum state. Due
to this fact, this graph does not have a tree structure but rather
resembles a maze. Navigating in a maze, in turn, constitutes
one of the classic textbook RL problems (10, 41, 48, 49). Sec-
ond, our empirical analysis suggests that experiments generating
high-dimensional multipartite entanglement tend to have some
structural similarities (12) (Fig. 4 A and B partially displays
the exploration space). Fig. 4 shows regions where the den-
sity of interesting experiments (large colored nodes) is high and
others where it is low—interesting experiments seem to be clus-
tered (Fig. S2). In turn, RL is particularly useful when one
needs to handle situations which are similar to those previously
encountered—once one maze (optical experiment) is learned,
similar mazes (experiments) are tackled more easily, as we have
seen before. In other words, whenever the experimental task has
a maze-type underlying structure, which is often the case, PS can
likely help—and critically, without having any a priori informa-
tion about the structure itself (41, 51). In fact, PS gathers infor-
mation about the underlying structure throughout the learning
process. This information can then be extracted by an external
user or potentially be used further by the agent itself.

The Potential of Learning from Experiments. Thus far, we have
established that a machine can indeed design new quantum
experiments in the setting where the task is precisely specified
(via the rewarding rule). Intuitively, this could be considered the
limit of what a machine can do for us, as machines are speci-
fied by our programs. However, this falls short from what, for
instance, a human researcher can achieve. How could we, even
in principle, design a machine to do something (interesting) we
have not specified it to do? To develop an intuition for the type
of behavior we could hope for, consider, for the moment, what
we may expect a human, say a good PhD student, would do in
situations similar to those studied thus far.

1224 | www.pnas.org/cgi/doi/10.1073/pnas.1714936115 Melnikov et al.

combine optical
elements to produce
highly entangled states

Briegel group

Melnikov et al
PNAS 2018

'projective simulation’ RL technique



Discover optical experiments 
RL (Projective simulation) 
Melnikov et al. PNAS 2018

State preparation in 
spin chains 
RL (Q learning) 
Bukov et al. PRX 2018

Adaptive quantum 
metrology 
RL (Particle Swarm) 
Hentschel et al.  
PRL 2011



Discover optical experiments 
RL (Projective simulation) 
Melnikov et al. PNAS 2018

State preparation in 
spin chains 
RL (Q learning) 
Bukov et al. PRX 2018

Quantum error correction 
Deep RL (policy gradient) 
Foesel et al. PRX 2018

Control of qubits and spin chains 
Deep RL (PPO) 
August et al.  2018

2-qubit control 
Deep RL (TRPO) 
Niu et al. Qu. Inf. 2019

Surface code 
Sweke et al 2018

Qu. transport 
Porotti et al 2019

…

Adaptive quantum 
metrology 
RL (Particle Swarm) 
Hentschel et al.  
PRL 2011
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Deep RL (PPO) 
August et al.  2018
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State preparation in 
spin chains 
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Case study:

Reinforcement learning 

for quantum error correction


Thomas Fösel, Petru Tighineanu, Talitha Weiss, FM
Physical Review X 031084 (2018)



Goal: Apply neural-
network based 
reinforcement 
learning to quantum 
physics!



noise

qubits



noise
measurement

qubits

RL-environment

neural
network

RL-agent

action (gate)



| (0)i
noise

qubits

CNOT

CNOT

measure

Initialize qubit here: ↵ |0i+ � |1i| (0)i =

CNOT

(arbitrary quantum state,
unknown to the agent)



Goal: discover error correction strategies from scratch, 
without human guidance, for arbitrary noise and 
hardware constraints



stabilizer codes

dynamical
decoupling

decoherence-free
subspaces

adaptive noise
estimation

spatial correlations of noise
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Quantum Error Correction: many approaches



spatial correlations of noise

te
m

po
ra

l c
or

re
la

tio
ns

 o
f n

oi
se

Quantum Error Correction: many approaches

dynamical
decoupling

stabilizer codes

adaptive noise
estimation

decoherence-free
subspaces

reinforcement 

learning for 

quantum 

feedback



2N

This approach requires numerical simulation

By definition, we cannot classically simulate a full-scale 
quantum computer

most useful for optimizing the performance of small 
quantum modules ~O(5) qubits

Advantage: 
flexibility – hardware-adapted strategies



Modular approach to quantum computation

image from Brecht et al., Devoret/Schoelkopf labs, 
npj Quantum Information 2, 16002 (2016)

proposed for multiple 
hardware platforms, 
including superconducting 
circuits, ion traps, NV 
centres



Numerical results



Demonstrated reinforcement-learning as a 
flexible, generally applicable method
(no need to change method for different 
scenarios)

At present: applied neural-network-based 
reinforcement learning for up to 5 qubits, for 
several different physical scenarios



measurement

RL-environment

neural
network

RL-agent

action (gate)

example: 4 qubits, measurements possible on 
all, CNOTs between all, bit-flip noise on all

˙̂⇢ =
1

Tdec

X

j

(�̂xj ⇢̂�̂xj � ⇢̂)



time-step

after 60 epochs

after 160 epochs

converged

(showing 20 out of 200 time steps)

finds repetition code 
encoding sequence

avoids catastrophic 
measurements

discovers parity 
detections
applies them 
periodically

The network...

Physical Review X 031084 (2018)



Training Progress

Physical Review X 031084 (2018)

measure of success=
"recoverable quantum information"

RQ

training epoch (simulation run)
0 500 2500 22500

0

0.9

0.99

idle

non-adaptive detection

only encoding

adaptive



Can we understand what the 
network does?

"opening the box"



“How does the network operate?”



“How does the network operate?”

⇢̂



“How does the network operate?”

⇢̂

300 neurons in last hidden layer!



(pictures: Wikipedia, ‘Strebe’)

3D

2D



“t-SNE” method from machine learning field

clusters of similar network responses!



Visualize density matrix of 
given quantum state: 
Decompose into eigenstates

probabilities (eigenvalues)eigenstates

↵ |011i+ � |100i
3 qubits used for encoding

1 qubit for ancilla (measurement)

we don’t provide any of this, the 
network discovers this on its own...



1 2

3

45

6

“standard 
detection 
cycle”



1

2

3

4

5

6

7

unexpected 
measurement 
indicates error 
and triggers 
more complex 
sequence!



Even if encoding is known: Gate sequences 
for error detection/correction depend on 
hardware-specific constraints (like 
connectivity, available gates)!

Network discovers something new



What about more complex 
qubit connectivities ?

(more complex than all-to-all)
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Even if encoding is known: Gate sequences 
for error detection/correction depend on 
hardware-specific constraints (like 
connectivity, available gates)!

Physical Review X 031084 (2018)
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hand, repeating a measurement increases the time until the next parity measurement where new information about
errors can be gained. Thus, depending on the percentage of false measurements, the neural networks learn to perform
only a few or many additional measurements. We show the fraction of measurements, i. e. how many actions of all
actions are measurements, in fig. 5c of the main text. This data is obtained as an average of 213 = 8192 samples and
we also indicate the standard deviation (for the first data point it is so small that the error bars vanish behind the
dot). We observe that the average number of measurements used increases significantly. Here, in Fig. S8 we show a
typical trajectory for each measurement error probability that was used. In the lowest two trajectories, where the
error probability is already very large, one can readily identify examples of repeated measurements where some show a
di↵ering, false outcome. The anomalous outcome is specific to one measurement in contrast to a bit-flip that would
also a↵ect all future measurements.

m
easurem

ent error [%
]

0.1

0.3

1

3

10

Figure S8. Typical gate sequences obtained from networks that were trained with di↵erent measurement error probabilities.

7.6. The behavior of the state-aware network with recovery reward

According to the recovery reward structure described in suppl. sec. 3.1, only errors of the specified target qubit need
to be corrected to earn the correction reward. Errors occurring on any other qubit might or might not be corrected,
as long as their status of being flipped or not is remembered for the interpretation of further parity measurements
and the final decoding. Since the correction reward is only obtained after all time steps, in principle the network
could decide to correct also the errors of the target qubit only at the very end (after decoding). However, we observe
that the network corrects errors on the target qubit after an intermediate time - it typically performs a few further
parity measurement to determine the qubit where the error occurred. Even when this is clarified with more than 90%
certainty, it usually performs a few more parity measurements. We believe that this is done to optimize the immediate
reward earned due to preserving the recoverable quantum information. This is more pressing (since otherwise reward
might be lost) than the actual correction which will only be rewarded in the very end. Furthermore, we observe that
sometimes also errors on other qubits are corrected. This might be related to our observation of some “corrections”
even in the absence of a correction reward. There we conjecture that the network performs these corrections in order
to return to a well-known state.
While the correction is a rather slowly learned property (cf. Fig. S9), decoding is learned rapidly and with very

close to perfect success. We observe that the network immediately starts decoding after receiving the signal and fills
up all remaining time steps with actions that are equivalent to idle, since they do not operate on the qubit that carries
the logical qubit state (e. g. measurements on already decoded qubits, cf. inset of fig. 7a in the main text where the
error indicates the time step where the decoding signal is started). This is due to our reward structure that punishes
the network if it entangles additional qubits to continue error correcting. In practice, of course, one would want to
immediately read-out or proceed to perform operations on the decoded qubit, since it no longer profits from any
protection.
In Fig. S9(a) we show the mean of the rewards earned during the first 2 000 training epochs. We show the reward

split up in its four components and averaged over the time T and a batch of 128 di↵erent trajectories: the mean of all

Example: measurement errors
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structure, learning rate, …) for 
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Figure S11. Performance of a common hyperparameter set for di↵erent physical systems, defined in table S3. The learning
curves show the value of the recoverable quantum information RQ(T ) at the final time step of the episodes, averaged over the
last 100 epochs. We observe successful learning for all the combinations (for the “triangle” scenario, there is a limited success
rate, so we trained 5 networks each and show the best run here). Note that the performance for the optimum strategy depends
both on the scenario and the physical parameters, so the direct comparison of the saturation levels in these plots against each
other does not make a statement about a quality di↵erence in the learning process.
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Policy network: actions depending on measurements
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Naive approach *will not work

Shortest useful gate sequences already quite long
e.g. for 20 possible gates, in 10 time steps

2010

we will later consider sequences of 200 time steps!

Problem 1: Combinatorial explosion

possibilities
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Two key concepts

As much information as possible

Construct smart reward
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“As much information as possible”



RL-environment

neural
network

RL-agent

action (gate)

⇢̂
Quantum state as input!

But wait! Isn’t this cheating?
In an experiment, we cannot do this!
And the agent now knows the quantum state to preserve!!



Want to preserve arbitrary quantum state!

Consider “completely positive map” 
that describes the dissipative evolution of 
the whole quantum system

⇢̂(t) = �[⇢̂(0)]

In practice: need to evolve only four different 
density matrices simultaneously; feed all of them to 
the network. 

Ask network to preserve arbitrary state using 
the same gate sequence!

⇢̂(0) =
1

2
(1 + x�̂x1 + y�̂y1 + z�̂z1)⌦ ⇢̂Rest

~n = (x, y, z) Bloch vector of logical qubit state



recurrent (memory) network
measurement results

state-aware network

action probabilities

⇢̂

quantum state

In an experiment, we only have access to 
measurement results!

teach

“Two-stage learning”
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Training the recurrent network

!

...works very well and reliable!

Physical Review X 031084 (2018)
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Analyzing the recurrent network

identify “switches” and “counters”
LSTM=long short-term memory (Schmidhuber, Hochreiter)

Physical Review X 031084 (2018)



“Smart reward scheme”



Find a general measure of the amount of 
quantum information that can still be 
retrieved from a multi-qubit device...

...after complex entangling gate sequences!

...in the presence of noise!

...using some smart error detection/
correction scheme! 
(without knowing that scheme!)

“Smart reward scheme”

big zero“amount of
quantum info”



Idea: initially orthogonal states 
should remain distinguishable!

probability to distinguish by optimal measurement:
1

2
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“Recoverable Quantum Information”

RQ = min~n
1

2
k ⇢̂~n � ⇢̂�~n k1

(worst-case initial state defines success of quantum memory)

Define

Physical Review X 031084 (2018)



Key result: 

network discovering from scratch 
quantum error correction 
strategies based on feedback

Thomas Fösel, Petru Tighineanu, Talitha Weiss, FM

Physical Review X 031084 (2018)
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future: apply to other physical settings 
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FIG. 1. Sketch (not to scale) of device ar-
chitecture and experimental protocol. (A)
A three dimensional schematic of the device con-
sisting of two coaxial cavities (Alice and Bob), a
Y-shaped transmon with a single Josephson junc-
tion (marked by “⇥”), and a stripline readout res-
onator. All components are housed inside a single
piece of bulk high-purity aluminum, with artifi-
cial windows drawn for illustration purposes. (B)
A top view of the same device, showing the rela-
tive position of the sapphire chip, center posts of
the coaxial cavities, transmon antenna, and the
readout resonator. (C) The microwave control
sequences for generating the two-mode cat state
and performing Wigner tomography. D� repre-
sents cavity displacement by �, and a superscript
g is added if the displacement is conditional on
the ancilla being in |gi. Rge

✓ or Ref
✓ represents

ancilla rotation by angle ✓ (around an axis in the
X-Y plane) in the |gi-|ei Bloch sphere or |ei-|fi
Bloch sphere. R00

⇡ is an ancilla |gi-|ei rotation
conditional on the cavities being in |0iA|0iB . C�

represents cavity phase shift of � conditional on
the ancilla being in an excited state. By choos-
ing �i + �0

i = ⇡ or 2⇡, we can measure photon
number parity of Alice (PA), Bob (PB), or the
two combined (PJ), to perform Wigner tomog-
raphy of individual cavities or the joint Wigner
tomography.

control is further manifested by the presence of entangle-
ment exceeding classical bounds in a CHSH-style inequality
for two continuous-variable systems14. Finally, our two-
cavity space e↵ectively encodes two coupled logical qubits
in the coherent state basis, and we present e�cient two-
qubit tomography in this encoded space.
Our experimental setup uses a three-dimensional (3D)

circuit QED architecture15, where two high-Q 3D cavities
and a quasi-planar readout resonator simultaneously couple
to a fixed-frequency transmon-type superconducting qubit
(Fig. 1A,B)16. The two cavities that host the cat state of
microwave photons are implementations of the longest-lived
quantum memory in circuit QED to date17. The transmon,
while usually considered a qubit, behaves as an artificial
atom with multiple energy levels. We use the transmon as
an ancilla to manipulate the multi-photon states in the two
cavities, and its lowest three levels, |gi, |ei and |fi, are ac-
cessed in this experiment. The device is cooled down to 20
mK in a dilution refrigerator, and microwave transmission
through the readout resonator is used to projectively mea-
sure the ancilla state with a heterodyne detection at room
temperature after multiple stages of amplification.
We consider the Hamiltonian of the system including two

harmonic cavity modes, a three-level atom, and their dis-
persive interaction (with parameters listed in Table I):

H/~ =!Aa
†
a+ !Bb

†
b+ !ge|eihe|+ (!ge + !ef )|fihf |

� �
ge
A a

†
a|eihe|� (�ge

A + �
ef
A )a†a|fihf |

� �
ge
B b

†
b|eihe|� (�ge

B + �
ef
B )b†b|fihf | (3)

where !A and !B are the angular frequencies of the two
cavities (Alice and Bob), !ge and !ef are the |ei ! |gi and
|fi ! |ei transition frequencies of the ancilla, �ge

i and �
ef
i

(i = A or B) represent the dispersive frequency shifts of
cavity i associated with the two ancilla transitions. The
readout resonator and small high-order nonlinearities are
neglected for simplicity. Using time-dependent external
classical drives in the form of microwave pulses, we can per-
form arbitrary ancilla rotations in both |gi-|ei and |ei-|fi
manifolds, and arbitrary cavity state displacements in Alice
(D�A = e

�Aa†��⇤
Aa) and Bob (D�B = e

�Bb†��⇤
Bb) indepen-

dently. More importantly, the state-dependent frequency
shifts (�’s) allow cavity state manipulations conditioned
on the ancilla level or vice versa using spectrally-selective
control pulses, thus realizing atom-photon quantum logic
gates5. It can be further shown that with separate drives on
the two cavities and a drive on the ancilla, this Hamiltonian

!/2⇡ T1 T ⇤
2

Cavities: Alice 4.2196612 GHz 2.2-3.3 ms 0.8-1.1 ms
Bob 5.4467679 GHz 1.2-1.7 ms 0.6-0.8 ms

Transmon: |ei ! |gi 4.87805 GHz 65-75 µs 30-45 µs
(Ancilla) |fi ! |ei 4.76288 GHz 28-32 µs 12-24 µs

�/2⇡ Alice Bob

�ge 0.71 MHz 1.41 MHz
�ef 1.54 MHz 0.93 MHz

TABLE I. Hamiltonian parameters and coherence times of the
two storage cavities and the transmon ancilla, including tran-
sition frequencies (!/2⇡), dispersive shifts between each cavity
and each transmon transition (�), energy relaxation time (T1),
and Ramsey decoherence time (T ⇤

2 ). The cavity frequencies are
given with a precision of ±100 Hz and are stable over the course
of several months.

(Schoelkopf, Devoret lab 2016) 
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therefore does not rely on a teacher, it often achieves
super-human performance in situations where such a com-
parison can be made.

In recent years, RL has also been proposed for several
problems in the field of quantum computing. Examples
include quantum phase estimation [28], the design of quan-
tum experiments [29], quantum control [30–33], quantum
error correction [34–37] (alongside other machine learning
approaches [38–41]), and quantum metrology [42, 43].

In this work, we introduce deep reinforcement learning
for quantum circuit optimization. Our approach enables
the computer to autonomously discover strategies for
reducing the depth and gate count of quantum circuits,
for arbitrary gate sets and connectivity. It allows to choose
the optimization target at will and permits extrapolation
of the discovered strategy to larger circuits. Due to its
flexibility and generality, the RL approach proposed here
has the potential to become a valuable component of the
toolbox needed to unlock the power of NISQ devices in
the near future.

II. TECHNIQUE

A. Quantum circuit optimization as reinforcement
learning problem

The goal of RL is to discover strategies for decision-
making problems. This is described by an “agent” inter-
acting with the rest of the world, the “environment”. In
several rounds, the agent receives information from the
environment and, in response to this observation, chooses
an action which alters the state of the environment. The
agent is supposed to adapt its strategy so as to maximize
a success measure, the “reward”. More information is
provided in Sec. II C.
In the spirit of previous RL applications to quantum

problems [28, 30–34, 42, 43], the obvious approach seems
to let the agent build a circuit gate by gate to implement
a certain target operation. However, this would come
with two central problems here. First, it is extremely un-
likely to find a suitable circuit by chance, so an untrained
agent would in practice probably never see a positive
reward signal. This problem is exacerbated by the fact
that the gate set is typically not discrete, but gates can
depend on continuous parameters. Second, in the par-
ticularly interesting quantum supremacy regime where
the circuit cannot be simulated on a classical computer,
there is the problem that even if one had found a valid
circuit, verifying its correctness would be very hard and
computationally expensive. Note that some tools like ZX
calculus promise to arrive at a statement in polynomial
time, but with the two possible results being positive or
inconclusive whether two circuits are equivalent.
Therefore, we follow a di↵erent strategy that appears

more promising: In QCO, it is common to start from a
complete and correct, but typically ine�cient circuit, and
to progressively optimize it by applying a sequence of

a

b

c

Figure 1. Overview. a) Diagram representation for quantum
circuits. Each qubit is indicated with one line. The colored
symbols represent operations (gates) on these qubits, with
time increasing to the right. b) Quantum circuit optimiza-
tion. For a given circuit, we aim to find a logically equivalent,
but more e�cient representation. c) Our reinforcement learn-
ing approach to quantum circuit optimization. Based on a
diagram-like representation of the circuit, the agent, realized
by a neural network, can choose between several circuit trans-
formations to generate another, logically equivalent circuit;
this process is repeated multiple times.

circuit transformations. However, it can be a formidable
challenge to appropriately choose these transformations,
and we make this decision the task of our agent. From the
RL perspective, this means that the states are the circuits
and the actions are the circuit transformations. By design,
this approach immediately solves the challenge to finish
with a correct, i. e., logically equivalent, circuit: we can
preserve this property for the full process by allowing in
each step only equivalence transformations. In addition,
our approach is also scalable, i. e., it allows us to operate
in the quantum supremacy regime: it is su�cient to verify
equivalence for the few operations directly involved in
an elementary circuit transformation, which is relatively
cheap as long as all operations act only on a limited
number of qubits.

Our general goal is to use RL to train a multi-purpose
agent which afterwards will be able to optimize a wide
class of circuits based on one given hardware architecture,
without going through the RL procedure again in each

Quantum Circuit Optimization: 
reduce gate count / depth / etc. !
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a

b c

Figure 4. Extrapolation to 50-qubit random circuits. The
agent has been trained on 12-qubit circuits (cmp. Fig. 3), no
further learning updates are performed here. (a) shows the
comparison between an unoptimized example circuit (after
pruning) and the result of the optimization by the RL agent.
(b) shows the progress of the agent in reducing depth d and gate
count n over the course of 2500 transformations. (c) shows the
corresponding curves for simulated annealing, which requires
almost 100000 transformations to achieve a comparable degree
of optimization (the computation was terminated after 1 week,
at transformation 93000).

two quantities is comparable to the smaller circuits it has
been trained on (cmp. Fig. 3).
Simulated annealing arrives at similar values, hdi =

112.72 ± 0.24 and hni = 1583.0 ± 7.3, within 93000
transformations. These are much fewer transformations
than required to optimize the smaller random circuits in
Sec. IIIA, probably because here the random expansion
step has been skipped. Nevertheless, 93000 transforma-
tions for each larger random circuits here have already
taken one week (our termination criterion), which is com-
parable to the time needed to train an RL agent. Af-
terwards, this agent can optimize arbitrary circuits, in a
relatively short time (3 . . . 5 h in this case).
Our results show that an agent can actually extrapo-

late its knowledge to larger circuits. More generally, they
demonstrate that our approach, both with RL and simu-
lated annealing, works deep in the quantum supremacy
regime. Furthermore, this also highlights a situation
where optimizing even a single circuit with simulated an-
nealing needs already a runtime comparable to the full
training of an RL agent and subsequently optimizing the
particular circuit.

Figure 5. Optimization of QAOA-MaxCut circuits. (a)
indicates how to translate the MaxCut problem for a graph
into a quantum circuit following QAOA, and how to e�ciently
compile this logical circuit into our gate set. We display one
of M cycles which form the full circuit, each with a di↵erent
set of parameters (�c,�c) whose values are refined during the
QAOA algorithm. (b) shows the compiled circuit for C = 2
cycles and an all-to-all-connected graph with 6 nodes, which
has depth d = 75 and gate count n = 142 (top). Using a
generic agent trained on random circuits as in Fig. 3, we find
(by postselection) improved circuits with d = 68 and n = 138
(middle). A specialized agent trained on this particular circuit
can further optimize it to d = 66 and n = 138 (bottom).

C. QAOA-MaxCut circuit

As an example for a real-world quantum algorithm,
we now consider the MaxCut problem. The goal is to
arrange the nodes of an undirected, non-weighted graph
into two groups such that the amount of cut edges is
maximized. Finding the exact solution is an NP-hard
problem. Following the quantum approximate optimiza-
tion algorithm (QAOA [7]), approximate solutions can
be found with the help of a quantum circuit consisting
of repeated cycles of ZZ gates and local X rotations with
variable angles [48] (cmp. Fig. 5a). We consider the
same gate set as in the examples above, such that we can
reuse the previously trained agent. Also, this covers the
realistic situation where the native gates of the quantum
algorithm do not necessarily match the native gates of
the hardware. Fig. 5a shows an e�cient compilation of
this circuit into our gate set, where ZZ gates need to be
decomposed into CNOTs and local Z rotations (local X
rotations are a special case of Phased-X gates). Note
that the variable angles of the gates do not a↵ect the
optimization strategy, as long as we assume these angles
to be generic (i. e., not set to special values which would

NISQ devices: Quantum Circuit Optimization critical 
…and needs to be hardware-dependent 
[not on an abstract level designed for large-scale 
fault-tolerant circuits]



5

momentqubit
index

gate
class

10

observation for circuit=state s
agent=

convolutional neural network

channel
index

moment

qubit
index

momentqubit
index

transformation rule

policy ⇡(a|s)
P

state value V (s)

Figure 2. Deep convolutional network architecture of our RL agent. As observation, the agent receives a complete description
of the state s, i. e., the quantum circuit. The input neurons are arranged on a 3D grid, whose axes correspond to qubit index,
moment and gate class. This information is processed through a stack of multiple convolutional layers, where qubit index and
moment are treated as spatial dimensions and the gate classes as input color channels. For the output, the agent computes two
quantities: (i) The policy ⇡(s|a), according to which the actions a in state s are probabilistically chosen. Every action, i. e.,
circuit transformation, is mapped uniquely to one policy output neuron; the remaining neurons are disabled with an action
mask. And (ii), the state value V (s), which helps to update the policy ⇡(s|a) more e�ciently during training. For us, V (s) has
the meaning of the optimization potential for the circuit.

indicate the underlying rule, we can achieve an injective
mapping from transformations to output neurons (for the
policy). Therefore, also these neurons are arranged on a
3D grid, whose axes correspond to qubit index, moment
and transformation rule. There can be neurons to which
no transformation is associated; we disable them with an
action mask, whose value changes with the input circuit.
Besides solving the problem to keep the total number

of output neurons at a moderate level, another central
advantage of this format is that we can exclusively use con-
volutional layers [45] to process the observation into the
policy, treating qubit and moment as spatial dimensions,
and the remaining grid axis (gate class and transforma-
tion rule, respectively) as input “color” channels. Also
to compute the state value, we use convolutional layers
(with one output channel), and eventually average over
the spatial dimensions. Fig. 2 illustrates the architecture
of our deep convolutional network. The weight sharing in
the convolutional layers contributes to e�cient and robust
learning, and a fully convolutional architecture will allow
us to directly extrapolate to di↵erent circuit sizes (see
Sec. III B).

F. RL problem classification

The RL problem in this article can be classified as a
Markov decision process (MDP) with perfect information
(since the circuit representation, which is given to the
agent as its input, completely describes the state of the
environment). The set of all circuits comprises the state
space. The set of possible circuit transformations repre-

sent the action space, which is therefore discrete, and its
size depends on the state, i. e., the circuit. The environ-
ment is deterministic: a fixed transformation (action) on
a fixed circuit (state) always leads to the same outcome.
Because the goal is to optimize a property which can be
evaluated for any single given circuit, we can construct
an immediate reward scheme (as opposed to situations
where the reward is given only at the end of an episode).

III. RESULTS

In exploring the power of our RL approach, we need
to select both a specific architecture (available gate set,
processor layout, qubit connectivity) as well as the family
of quantum circuits on whose optimization we want to
focus.
Gate set For our simulations, we consider the gate set
consisting of Z-Rotation, Phased-X and Controlled-Not
(CNOT) gates. Together, they form a universal gate
set. Whereas Z-Rotation and Phased-X are actually gate
classes parameterized by 1 and 2 continuous variables,
respectively, the CNOT is one fixed gate.

For our purposes, Z-Rotation, Phased-X and CNOT is a
decent gate set because on the one hand, it induces a rich
set of relatively simple transformation rules. On the other
hand, they are quite similar to current real-world quan-
tum hardware, such as Google’s Bristlecone (Z-Rotation,
Phased-X and Controlled-Z gate [46]) and Sycamore
(Z-Rotation, Phased-X and fermionic simulation gate
[9, 47, 48]) processor: The CNOT gate di↵ers from the
Controlled-Z gate only by local gates (e. g., Hadamard or

Transformation rules
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therefore does not rely on a teacher, it often achieves
super-human performance in situations where such a com-
parison can be made.

In recent years, RL has also been proposed for several
problems in the field of quantum computing. Examples
include quantum phase estimation [28], the design of quan-
tum experiments [29], quantum control [30–33], quantum
error correction [34–37] (alongside other machine learning
approaches [38–41]), and quantum metrology [42, 43].

In this work, we introduce deep reinforcement learning
for quantum circuit optimization. Our approach enables
the computer to autonomously discover strategies for
reducing the depth and gate count of quantum circuits,
for arbitrary gate sets and connectivity. It allows to choose
the optimization target at will and permits extrapolation
of the discovered strategy to larger circuits. Due to its
flexibility and generality, the RL approach proposed here
has the potential to become a valuable component of the
toolbox needed to unlock the power of NISQ devices in
the near future.

II. TECHNIQUE

A. Quantum circuit optimization as reinforcement
learning problem

The goal of RL is to discover strategies for decision-
making problems. This is described by an “agent” inter-
acting with the rest of the world, the “environment”. In
several rounds, the agent receives information from the
environment and, in response to this observation, chooses
an action which alters the state of the environment. The
agent is supposed to adapt its strategy so as to maximize
a success measure, the “reward”. More information is
provided in Sec. II C.
In the spirit of previous RL applications to quantum

problems [28, 30–34, 42, 43], the obvious approach seems
to let the agent build a circuit gate by gate to implement
a certain target operation. However, this would come
with two central problems here. First, it is extremely un-
likely to find a suitable circuit by chance, so an untrained
agent would in practice probably never see a positive
reward signal. This problem is exacerbated by the fact
that the gate set is typically not discrete, but gates can
depend on continuous parameters. Second, in the par-
ticularly interesting quantum supremacy regime where
the circuit cannot be simulated on a classical computer,
there is the problem that even if one had found a valid
circuit, verifying its correctness would be very hard and
computationally expensive. Note that some tools like ZX
calculus promise to arrive at a statement in polynomial
time, but with the two possible results being positive or
inconclusive whether two circuits are equivalent.
Therefore, we follow a di↵erent strategy that appears

more promising: In QCO, it is common to start from a
complete and correct, but typically ine�cient circuit, and
to progressively optimize it by applying a sequence of

a

circuit
optimization

original circuit
equivalent, more
e�cient circuit

agentenvironment

circuit representation
observation

circuit transformation

action

b

c

Figure 1. Overview. a) Diagram representation for quantum
circuits. Each qubit is indicated with one line. The colored
symbols represent operations (gates) on these qubits, with
time increasing to the right. b) Quantum circuit optimiza-
tion. For a given circuit, we aim to find a logically equivalent,
but more e�cient representation. c) Our reinforcement learn-
ing approach to quantum circuit optimization. Based on a
diagram-like representation of the circuit, the agent, realized
by a neural network, can choose between several circuit trans-
formations to generate another, logically equivalent circuit;
this process is repeated multiple times.

circuit transformations. However, it can be a formidable
challenge to appropriately choose these transformations,
and we make this decision the task of our agent. From the
RL perspective, this means that the states are the circuits
and the actions are the circuit transformations. By design,
this approach immediately solves the challenge to finish
with a correct, i. e., logically equivalent, circuit: we can
preserve this property for the full process by allowing in
each step only equivalence transformations. In addition,
our approach is also scalable, i. e., it allows us to operate
in the quantum supremacy regime: it is su�cient to verify
equivalence for the few operations directly involved in
an elementary circuit transformation, which is relatively
cheap as long as all operations act only on a limited
number of qubits.

Our general goal is to use RL to train a multi-purpose
agent which afterwards will be able to optimize a wide
class of circuits based on one given hardware architecture,
without going through the RL procedure again in each

Deep reinforcement learning approach

hardware-efficient, cross-platform, autonomous, reliable
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Figure 2. Deep convolutional network architecture of our RL agent. As observation, the agent receives a complete description
of the state s, i. e., the quantum circuit. The input neurons are arranged on a 3D grid, whose axes correspond to qubit index,
moment and gate class. This information is processed through a stack of multiple convolutional layers, where qubit index and
moment are treated as spatial dimensions and the gate classes as input color channels. For the output, the agent computes two
quantities: (i) The policy ⇡(s|a), according to which the actions a in state s are probabilistically chosen. Every action, i. e.,
circuit transformation, is mapped uniquely to one policy output neuron; the remaining neurons are disabled with an action
mask. And (ii), the state value V (s), which helps to update the policy ⇡(s|a) more e�ciently during training. For us, V (s) has
the meaning of the optimization potential for the circuit.

indicate the underlying rule, we can achieve an injective
mapping from transformations to output neurons (for the
policy). Therefore, also these neurons are arranged on a
3D grid, whose axes correspond to qubit index, moment
and transformation rule. There can be neurons to which
no transformation is associated; we disable them with an
action mask, whose value changes with the input circuit.
Besides solving the problem to keep the total number

of output neurons at a moderate level, another central
advantage of this format is that we can exclusively use con-
volutional layers [45] to process the observation into the
policy, treating qubit and moment as spatial dimensions,
and the remaining grid axis (gate class and transforma-
tion rule, respectively) as input “color” channels. Also
to compute the state value, we use convolutional layers
(with one output channel), and eventually average over
the spatial dimensions. Fig. 2 illustrates the architecture
of our deep convolutional network. The weight sharing in
the convolutional layers contributes to e�cient and robust
learning, and a fully convolutional architecture will allow
us to directly extrapolate to di↵erent circuit sizes (see
Sec. III B).

F. RL problem classification

The RL problem in this article can be classified as a
Markov decision process (MDP) with perfect information
(since the circuit representation, which is given to the
agent as its input, completely describes the state of the
environment). The set of all circuits comprises the state
space. The set of possible circuit transformations repre-

sent the action space, which is therefore discrete, and its
size depends on the state, i. e., the circuit. The environ-
ment is deterministic: a fixed transformation (action) on
a fixed circuit (state) always leads to the same outcome.
Because the goal is to optimize a property which can be
evaluated for any single given circuit, we can construct
an immediate reward scheme (as opposed to situations
where the reward is given only at the end of an episode).

III. RESULTS

In exploring the power of our RL approach, we need
to select both a specific architecture (available gate set,
processor layout, qubit connectivity) as well as the family
of quantum circuits on whose optimization we want to
focus.
Gate set For our simulations, we consider the gate set
consisting of Z-Rotation, Phased-X and Controlled-Not
(CNOT) gates. Together, they form a universal gate
set. Whereas Z-Rotation and Phased-X are actually gate
classes parameterized by 1 and 2 continuous variables,
respectively, the CNOT is one fixed gate.

For our purposes, Z-Rotation, Phased-X and CNOT is a
decent gate set because on the one hand, it induces a rich
set of relatively simple transformation rules. On the other
hand, they are quite similar to current real-world quan-
tum hardware, such as Google’s Bristlecone (Z-Rotation,
Phased-X and Controlled-Z gate [46]) and Sycamore
(Z-Rotation, Phased-X and fermionic simulation gate
[9, 47, 48]) processor: The CNOT gate di↵ers from the
Controlled-Z gate only by local gates (e. g., Hadamard or

Choices: States, Agent, Actions, Rewards

Reward: reduction in gate count, depth, or combination

Technique: Advantage Actor Critic (namely: PPO)

(possibly: gate-dependent, decoherence estimate, …)
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Figure 3. Training on random circuits. a) Circuit processing pipeline (see Sec. IIIA for details). After choosing an initial
circuit by randomly combining gates, a pruning step follows where all “trivial” optimizations are applied. Afterwards, 500
random transformations are performed on this circuit, which turns out to significantly increase their depth d and gate count n.
These expanded circuits are then used as the starting point of the episodes to train and evaluate the RL agent. b) Diagrams
illustrating the evolution of one example circuit through this pipeline. c) Learning progress during training, demonstrating how
the agent improves in reducing both the depth d (top) and the gate count n (bottom) of the circuits. The point cloud indicates,
for all episodes during training, the corresponding quantity in the final time step. The blue curve shows the moving average over
the latest 10% of epochs. For comparison, the gray line indicates the corresponding averages after pruning; already early in the
training, the agent falls below this level for both quantities. d) In-game progress at the end of the learning process, showing
for 5 episodes during the last epoch (orange) how the agent progressively optimizes (d, n) during an episode. The blue curve
indicates the average over all episodes in the last 100 epochs of training. e) Relative improvement achieved by the RL agent, in
reference to the corresponding circuit size after pruning. Each point corresponds to one episode during the last 100 epochs.
f) Comparison with circuit optimization by simulated annealing (see Sec. IIIA for details). The graphical depiction and the
considered circuits are equivalent to (e), which makes them directly comparable.

knowledge in this situation.

For this purpose, we reuse the scheme to generate
random circuits as described in Sec. IIIA, except for
changing two parameters: we increase the number of
qubits from 12 to 50, and the number of initial gates
from 150 to 2500. We find hdi = 199.25 ± 0.08 and
hni = 2655.3±1.2 before pruning, and hdi = 156.67±0.07
and hni = 1940.2± 1.6 after pruning. Because we will not

use the circuits here to train the agent, we can skip the
step to expand them by random transformations, whose
purpose it was to feed to the agent also very ine�cient
circuits during training. Instead, the optimization by
the agent starts here directly from the pruned circuits.
As shown in Fig. 4b, the agent achieves to reduce hdi
to 110.84 ± 0.07 and hni to 1616.3 ± 2.0 within 2500
transformations. Remarkably, the reduction ratio in these

Training on Random Circuits
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knowledge in this situation.

For this purpose, we reuse the scheme to generate
random circuits as described in Sec. IIIA, except for
changing two parameters: we increase the number of
qubits from 12 to 50, and the number of initial gates
from 150 to 2500. We find hdi = 199.25 ± 0.08 and
hni = 2655.3±1.2 before pruning, and hdi = 156.67±0.07
and hni = 1940.2± 1.6 after pruning. Because we will not

use the circuits here to train the agent, we can skip the
step to expand them by random transformations, whose
purpose it was to feed to the agent also very ine�cient
circuits during training. Instead, the optimization by
the agent starts here directly from the pruned circuits.
As shown in Fig. 4b, the agent achieves to reduce hdi
to 110.84 ± 0.07 and hni to 1616.3 ± 2.0 within 2500
transformations. Remarkably, the reduction ratio in these

Training on Random Circuits: Progress

1 epoch = 32 episodes
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knowledge in this situation.

For this purpose, we reuse the scheme to generate
random circuits as described in Sec. IIIA, except for
changing two parameters: we increase the number of
qubits from 12 to 50, and the number of initial gates
from 150 to 2500. We find hdi = 199.25 ± 0.08 and
hni = 2655.3±1.2 before pruning, and hdi = 156.67±0.07
and hni = 1940.2± 1.6 after pruning. Because we will not

use the circuits here to train the agent, we can skip the
step to expand them by random transformations, whose
purpose it was to feed to the agent also very ine�cient
circuits during training. Instead, the optimization by
the agent starts here directly from the pruned circuits.
As shown in Fig. 4b, the agent achieves to reduce hdi
to 110.84 ± 0.07 and hni to 1616.3 ± 2.0 within 2500
transformations. Remarkably, the reduction ratio in these

Performance
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training): 
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Figure 4. Extrapolation to 50-qubit random circuits. The
agent has been trained on 12-qubit circuits (cmp. Fig. 3), no
further learning updates are performed here. (a) shows the
comparison between an unoptimized example circuit (after
pruning) and the result of the optimization by the RL agent.
(b) shows the progress of the agent in reducing depth d and gate
count n over the course of 2500 transformations. (c) shows the
corresponding curves for simulated annealing, which requires
almost 100000 transformations to achieve a comparable degree
of optimization (the computation was terminated after 1 week,
at transformation 93000).

two quantities is comparable to the smaller circuits it has
been trained on (cmp. Fig. 3).
Simulated annealing arrives at similar values, hdi =

112.72 ± 0.24 and hni = 1583.0 ± 7.3, within 93000
transformations. These are much fewer transformations
than required to optimize the smaller random circuits in
Sec. IIIA, probably because here the random expansion
step has been skipped. Nevertheless, 93000 transforma-
tions for each larger random circuits here have already
taken one week (our termination criterion), which is com-
parable to the time needed to train an RL agent. Af-
terwards, this agent can optimize arbitrary circuits, in a
relatively short time (3 . . . 5 h in this case).
Our results show that an agent can actually extrapo-

late its knowledge to larger circuits. More generally, they
demonstrate that our approach, both with RL and simu-
lated annealing, works deep in the quantum supremacy
regime. Furthermore, this also highlights a situation
where optimizing even a single circuit with simulated an-
nealing needs already a runtime comparable to the full
training of an RL agent and subsequently optimizing the
particular circuit.

Figure 5. Optimization of QAOA-MaxCut circuits. (a)
indicates how to translate the MaxCut problem for a graph
into a quantum circuit following QAOA, and how to e�ciently
compile this logical circuit into our gate set. We display one
of M cycles which form the full circuit, each with a di↵erent
set of parameters (�c,�c) whose values are refined during the
QAOA algorithm. (b) shows the compiled circuit for C = 2
cycles and an all-to-all-connected graph with 6 nodes, which
has depth d = 75 and gate count n = 142 (top). Using a
generic agent trained on random circuits as in Fig. 3, we find
(by postselection) improved circuits with d = 68 and n = 138
(middle). A specialized agent trained on this particular circuit
can further optimize it to d = 66 and n = 138 (bottom).

C. QAOA-MaxCut circuit

As an example for a real-world quantum algorithm,
we now consider the MaxCut problem. The goal is to
arrange the nodes of an undirected, non-weighted graph
into two groups such that the amount of cut edges is
maximized. Finding the exact solution is an NP-hard
problem. Following the quantum approximate optimiza-
tion algorithm (QAOA [7]), approximate solutions can
be found with the help of a quantum circuit consisting
of repeated cycles of ZZ gates and local X rotations with
variable angles [48] (cmp. Fig. 5a). We consider the
same gate set as in the examples above, such that we can
reuse the previously trained agent. Also, this covers the
realistic situation where the native gates of the quantum
algorithm do not necessarily match the native gates of
the hardware. Fig. 5a shows an e�cient compilation of
this circuit into our gate set, where ZZ gates need to be
decomposed into CNOTs and local Z rotations (local X
rotations are a special case of Phased-X gates). Note
that the variable angles of the gates do not a↵ect the
optimization strategy, as long as we assume these angles
to be generic (i. e., not set to special values which would

Large-scale Random Circuits
(same agent, now applied to larger circuit)

Convolutional network permits successful 
transfer of learned behaviour to much larger 
circuits: local environment of gates is relevant!

simulated annealing: ~ 1 week, comparable to full 
training time for general RL agent (that runs in 3-5 h)
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Figure 5. Optimization of QAOA-MaxCut circuits. (a)
indicates how to translate the MaxCut problem for a graph
into a quantum circuit following QAOA, and how to e�ciently
compile this logical circuit into our gate set. We display one
of M cycles which form the full circuit, each with a di↵erent
set of parameters (�c,�c) whose values are refined during the
QAOA algorithm. (b) shows the compiled circuit for C = 2
cycles and an all-to-all-connected graph with 6 nodes, which
has depth d = 75 and gate count n = 142 (top). Using a
generic agent trained on random circuits as in Fig. 3, we find
(by postselection) improved circuits with d = 68 and n = 138
(middle). A specialized agent trained on this particular circuit
can further optimize it to d = 66 and n = 138 (bottom).

C. QAOA-MaxCut circuit

As an example for a real-world quantum algorithm,
we now consider the MaxCut problem. The goal is to
arrange the nodes of an undirected, non-weighted graph
into two groups such that the amount of cut edges is
maximized. Finding the exact solution is an NP-hard
problem. Following the quantum approximate optimiza-
tion algorithm (QAOA [7]), approximate solutions can
be found with the help of a quantum circuit consisting
of repeated cycles of ZZ gates and local X rotations with
variable angles [48] (cmp. Fig. 5a). We consider the
same gate set as in the examples above, such that we can
reuse the previously trained agent. Also, this covers the
realistic situation where the native gates of the quantum
algorithm do not necessarily match the native gates of
the hardware. Fig. 5a shows an e�cient compilation of
this circuit into our gate set, where ZZ gates need to be
decomposed into CNOTs and local Z rotations (local X
rotations are a special case of Phased-X gates). Note
that the variable angles of the gates do not a↵ect the
optimization strategy, as long as we assume these angles
to be generic (i. e., not set to special values which would

Example:  
Quantum Approximate Optimization Algorithm (QAOA) 
– specifically, for the MaxCut problem
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C. QAOA-MaxCut circuit

As an example for a real-world quantum algorithm,
we now consider the MaxCut problem. The goal is to
arrange the nodes of an undirected, non-weighted graph
into two groups such that the amount of cut edges is
maximized. Finding the exact solution is an NP-hard
problem. Following the quantum approximate optimiza-
tion algorithm (QAOA [7]), approximate solutions can
be found with the help of a quantum circuit consisting
of repeated cycles of ZZ gates and local X rotations with
variable angles [48] (cmp. Fig. 5a). We consider the
same gate set as in the examples above, such that we can
reuse the previously trained agent. Also, this covers the
realistic situation where the native gates of the quantum
algorithm do not necessarily match the native gates of
the hardware. Fig. 5a shows an e�cient compilation of
this circuit into our gate set, where ZZ gates need to be
decomposed into CNOTs and local Z rotations (local X
rotations are a special case of Phased-X gates). Note
that the variable angles of the gates do not a↵ect the
optimization strategy, as long as we assume these angles
to be generic (i. e., not set to special values which would
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