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Supervised learning vs
reinforcement learning



“Supervised learning”
; !

teacher student
(smart) (imitates teacher)

final level limited by teacher



“Reinforcement learning”

!
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student/scientist
(tries out things)

final level: unlimited (?)



Reinforcement learning:
The basic setting
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reward environment

...may be delayed!

...depends on behaviour of
environment




Reinforcement learning:

Discover strategies ('policies’) =
actions in response to observations,
maximizing rewards

S




“policy”

state - action

observation

RL-agent RL-environment



Examples
(preview)



Cartpole (balancing)

=

state = angle and velocity of pendulum
action = acceleration of cart
reward = height of mass on pendulum



Solving a fixed maze with fixed target, starting from
random location

state = location of robot
action = move
reward depends on number of time steps until target



Solving a random maze, starting from random location

state = image of whole maze, including robot & target
action = move
reward depends on number of time steps until target



Solving a fixed or random maze, observing only
close-by surroundings

observed state = image of surroundings
action = move
agent needs memory for good strategy!




Playing video games

SRS R8RS RS B
SECTOR B |

observed state = screen image
action = move player spaceship
reward = high-score



Playing board games

a

observed state = board

action = make allowed game move

reward = |,0,-1 at end, depending on win/draw/lose
environment includes opponent



Feedback-based quantum control  QqUa ntum

control feedback!

neural

(open)
Q system

observation

RL-agent RL-environment

measurements



Feedback-based quantum control

observation

RL-agent RL-environment



Feedback-based quantum control

observation

RL-agent RL-environment



Feedback-based quantum control

observation

RL-agent RL-environment



Feedback-based quantum control

observation

RL-agent RL-environment



Feedback-based quantum control

observation

RL-agent RL-environment



More abstract: modifying quantum circuits

4 " )

qubit 1 D

qubt2—RZ?iPX-RZ l T
- D

qubit 3 D PX i O

qubit 4 —?-Rz-le l -

qubit 5 RZ D RZ

\_ J

state = whole quantum circuit
action = transformation (changing gates)
reward = e.g. whether circuit becomes shorter



Preliminaries

Delayed rewards:

discounting,
greedy vs non-greedy



Adding up rewards and discounting

R=Zrt

=1

"return" \ ("instantaneous")
(sum of rewards) "reward" at time step t

We want to optimize the "return”!

(if the states are independent of the actions and the
reward does not depend on the previous actions/
states, this becomes supervised learning again)



Adding up rewards and discounting

T
R, = Z v,
(partial, future) / = \

"return’”
starting at time t reward" at time step t’

Can choose action at time t to optimize this instead
of full R: this is equivalent, since
former rewards do not depend on future actions!



Adding up rewards and discounting
dlscountmg factor”

Rt irt y <1

t'=t \
discounted future ' return
starting at time t "reward" at time step t’

- prioritize sooner rewards over later rewards
- easier to optimize, but becomes "greedy" !



Adding up rewards and discounting

reward r
A

Py -

time t



Adding up rewards and discounting

reward r reward r
A A

ed.. | .

time t time t



Adding up rewards and discounting

reward r reward r
A A

Py -

time t time t



Adding up rewards and discounting

reward r
A

Py -

time t

preferred by
"sreedy"” strategy

y <K 1

reward r
A

time t

preferred by optimal
(non-greedy) strategy

y =1



Preliminaries

Model-based vs model-free
reinforcement learning



Return depends on environment dynamics

dynamics of environment

/

R = R(U(a\))

action (at some
early time)



Return depends on environment dynamics

dynamics of environment

/

R = R(U(a\))

action (at some
early time)

If model of environment is Khnown:
use gradient descent with

OR B oR oU
da oU oa



Return depends on environment dynamics

R R
R = R(U(a)) Z_a _ Z_UZ_Z

model-based reinforcement learning

example in quantum physics: 'GRAPE'



Return depends on environment dynamics

R = R(U(a))

model-based reinforcement learning

for discrete actions: tree search

—
—




What do we do if we do not know any
model of the environment!?
[or we do not want to adapt our algorithm
to that particular model]

dynamics of environment

/

I = R(U(a\))

action (at some
early time)



Essential idea: we have to try out many action sequences
and see what happens (learn when the return is high)

model-free reinforcement learning (these lectures)

Two basic approaches

(1) try out "all' actions, make a table of R values,
finally pick action with largest expected R

Q(Cl) — R(U(Cl)) "Q learning”

(2) try actions stochastically, change action
probabilities P(a) to optimize average R

R — Z R(U(a))P(a) "policy gradient”



Exploration/exploitation tradeoff
RL algorithms do not try all possible policies,
but try to already use what they have learned so far
to quickly come closer to the best policy
Danger: get stuck early in sub-optimal choices

Need to balance:

Exploitation = use what you have learned
Exploration = try something new

may introduce extra randomness for exploration



Preliminaries

Stochastic environments:

Markov decision process



State of the environment: §
Transition function: P(S/‘S, a)

Probability of going to state s’ given that we were in
state s and took action a

(could be deterministic: P=1 or 0)

" o o "
Markov decision process': Markov process (no memory)
with decisions (actions based on states)

(y o
N
/

\)



"what if the environment has memory"?

expand state space to include that memory,
going back to a Markov description

"what if the agent can only observe part of the state™

simple approach: constrain allowable policies
(action choices) to depend only on that part
of the state

note: deterministic, Markovian dynamics on the
full state space can lead to non-deterministic, non-
Markovian dynamics on a restricted state space



Overview:
Model-free reinforcement learning

Learn action probabilities (policy gradient)
Learn expected returns (Q learning)
Learn both together (actor-critic)



Policy gradient



@ state = position X,y

(or full map/image)

action = move (direction)

N




N

state = position x,y
(or full map/image)

action = move (direction)

reward for picking up a box

N




Policy Gradient

Policy gradient = REINFORCE (Williams 1992): A
simple model-free general reinforcement learning
technique

Basic idea: Use probabilistic NS
action choice. If the return NS

at the end turns out to be high,

make all the actions in this

sequence more likely g
(otherwise do the opposite) Ny

This will also sometimes reinforce ‘bad’ actions,
but since they occur more likely in trajectories
with low reward, the net effect will still be to
suppress them!



“policy”

state - action

observation
RL-agent RL-environment
Policy: 7Tg (at ‘ St) — probability to pick action (¢

given observed state S¢
at time t



Policy Gradient

state S action probabilities

action a probability




Policy Gradient

state S action probabilities

N5 action a probability

N

down

|
up 6
[

0.
0.
left 0.
right 0.

Environment: makes (possibly stochastic) transition
to a new state s’

Transition function: P(S/‘S, CL)



Policy Gradient

Probability for having a certain trajectory of actions
and states: product over time steps

I
P@(T) — HtP(St—I—l‘Sty at)m(at|st)

trajectory: r = (a,s)
T )

a — ap,a1,0a9, ...
S — S1,592,...



Policy Gradient

Expected cumulative reward (='return’):
sum over all trajectories

_ return for this sequence (sum
R = E[R] :Z Py (T)R(T) — over individual rewards r for all
T
|

times)

sum over all actions at all
times and over all states at all

times >0
S 3y

T ap,ajl,a2,...,81,82,...

Try to maximize expected return by changing
parameters of policy: B
OR

00

="



The logarithmic gradient trick
E[X)()] = ), Py()Xy(s)

Problem: gradient with respect to parameter also
acts on probability! Can we rewrite result as E[...]?

p b p a%Pg(S) 5 01n P,(s)
% o) = Py(s) P(s) = Py(s) 30
OE[X,(s)] _ g 01n Py(s) X()] + EI dX@(S)]

00 00 00



Policy Gradient

R=FE[R| =Y Ps(r)R(7)

ok _,
00
P@(T) — HtP(SH—l‘Sta Clt)ﬂ'g(&t‘st)

Derivative only acts on policy! (model-free!)

8R Y aﬂ' A¢|S 1
a5 = 2 3 R STEE e l P sy ol s

N

t T
\ g

\/

8ln7rg(at\st) PQ(T)
00




Policy Gradient

OR N Omg(as!|s 1
— = LLR(T) o(at]st) 1y P(s¢r 11184, a )mo(ay |se)

00 r — ] 06 70 (at\stz “ _
alnﬂg(at\st) PH(T)
00

Main formula of policy gradient method:

ZE 81117@ Cbt|8t)]

Stochastic gradient descent:

OR
At =n—5 where E|...| is approximated via the

% Value for one trajectory (or a batch)



Policy Gradient

ZE (91117?9 &t‘St)]

Increase the probability of all action choices in the
given sequence, depending on size of return R.

Even if R>0 always, due to normalization of probabilities
this will tend to suppress the action choices in
sequences with lower-than-average returns.



Policy gradient:
The random walker toy example



The simplest RL example ever

random walker

state = location
observed state = nothing (robot is blind)



The simplest RL example ever

A random walk, where the probability to go “up” is
determined by the policy, and where the return is
given by the final position p _ x(N)

(Note: this policy does not even depend on the current state)

position X

retrun R

0 l time step l N



The simplest RL example ever

A random walk, where the probability to go “up” is
determined by the policy, and where the return is
given by the final position p _ x(N)

(Note: this policy does not even depend on the current state)

. 1
policy To(up) = T

RLupdate A@—nz< alnwe at)>

a; = up or down

>




The simplest RL example ever

return: R =2x(N)= Nuyp — Naown = 2Nyp — N
N=number of time steps

logarithmic gradients:

81I17T9(CL)
zt: 90 t :Nup_Nﬂ-H(up)

RL update:

<RZ 81n7T9 (s > _ 2<(Nup _ g)(Nup —Nup)>

= 2VarNy, = 2N mg(up)(1 — my(up))

(general analytical expression for
average update, rare)



The simplest RL example ever

RL update for @ as a function of "up"-probability

0.30

025

0.20 +

015

AQ ~ mo(up)(1l — mp(up))

0.0 Q} d4 dG 68 10
quy: (UP)

probability to go up always increases (good!)



The simplest RL example ever

=

z

©

O :

S batch size 16 -
Q"0 50 100 150 200 250 300

training batch

Can also analyze: spread of update step,
improvement via "baseline" R +— R — b

(see later)



Policy gradient:
The walker/target toy example



The second-simplest RL example

actions: move or stay

fum

walker/target



The second-simplest RL example

actions: move or stay

fum

walker/target

>

c
9 “walker”.....
B T
3 *
o

- “target site”

|
... return R = number of time steps on target

—
time



The second-simplest RL example

actions: move or stay

fum

walker/target

state = location of robot and location of target (is random)
observed state = | when on target

= 0 when off target

policy:
W@(l‘o) "move when not on target”

etc.



"Walker/target": evolution during training

initial well-trained

(note: location of target is chosen randomly
during training, but here we display only trajectories
for one fixed target location)



"Walker/target": evolution during training

=
o

— () ideal

strategy

O
o)

O
o

<
=

O
N

qy: (O‘ 1) "stay when on target”

%0 02 04 06 08 1.0
me(1]/0) "move when not on target"



Reinforcement learning:

Discover strategies ('policies’) =
actions in response to observations,
maximizing rewards

S




& Reinforcement learning: basic setting
& Examples (preview)
& Some preliminaries
Policy gradient
® Dbasics
® toy examples
with neural networks
first guantum physics example
AlphaGo
Q-learning
pbasics
example: video games
Actor-critic (briefly)




Quick recap: policy gradient



“policy”

state - action

observation
RL-agent RL-environment
Policy: 7Tg (at ‘ St) — probability to pick action (¢

given observed state S¢
at time t



Policy Gradient

Probability for having a certain trajectory of actions
and states: product over time steps

I
P@(T) — HtP(St—I—l‘Sty at)m(at|st)

trajectory: r = (a,s)
T )

a — ap,a1,0a9, ...
S — S1,592,...



Policy Gradient

ZE alnﬂ'g at\st)]

depends on particular trajectory 7

Increase the probability of all action choices in the
given sequence, depending on size of return R.



"Walker/target": evolution during training

=
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— () ideal

strategy

O
o)

O
o
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N

qy: (O‘ 1) "stay when on target”

%0 02 04 06 08 1.0
me(1]/0) "move when not on target"



Policy gradient with
a neural network



Motivations for using neural networks:

treat high-dimensional inputs:
- Images
- time-series (measurements, sentences, ...)

treat high-dimensional outputs:

- e.g.placing a stone in a board game
- many control degrees of freedom in physics

exploit underlying structure in data
(such that we do not need to sample too much!)



Policy via neural network

policy my(als)
via a (deep) neural network

output = action probabilities (softmax)

action

Input ='s
(can be high-dimensional, e.g. picture)



"Walker/target": neural network version

policy my(a|s) via a neural network

output = action probabilities (softmax)

a=0 ("stay") a=| ("move"

input = s = "are we on target"? (0/1)



Policy gradient: all the steps

Obtain one "trajectory":

execute action (evolve environment),
record new state (& reward)

apply neural network to state,
thus obtain action probabilities

from probabilities, sample
action for next step




Policy gradient: all the steps

For each trajectory:

Do one trajectory
(in reality: a batch of trajectories)

Obtain overall sum of rewards (=return)

for each trajectory

apply policy gradient training
(enhance probabilities for all
actions in a high-return trajectory)




categorical cross-entropy trick

output = action
probabilities (softmax)

o (als)

input = state

categorical cross-entropy

distr. from net
C' ==Y P(a)lnmy(als)
. desired
distribution

Set
P(a) =R
for a=action that was taken

P(a) =0
for all other actions a

oC
90
implements policy gradient

A0 =



Policy gradient:
first guantum physics
example



Quantum physics example: Quantum feedback

RL-agent RL-environment



Quantum physics example: Quantum feedback

observation

RL-agent RL-environment

cavity, driven, with readout
goal! e.g. stabilize state



Output

... . displacement

mput 1

—_————

(measurement trace for last N time steps)



Kerrt ...

Output

mput 1

—_————

(measurement trace for last N time steps)



@ &
..... o Q.“

e pocL.JQ.Z,o o

® o o® %
o o 0 °

msmt trace (weak QND photon number msmt)

MAN WV

displacement drive

100%

O%W

Fock state 1 probability




50

A
" displacement drive
=
$d
0 N 400
training epochs S

v ca. 50%
% state | probability
0 - 400
training epochs S

(100 trajectories per epoch)



Research-level example:
state preparation via
nonlinear measurements
of a cavity



Linear Quantum
Control System

1
- D— =2 T >

Deep Reinforcement Learning for Quantum State Preparation with Weak Nonlinear Measurements,
R. Porotti, A. Essig, B. Huard, and F. Marquardt; arXiv: 2107.08816
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Deep Reinforcement Learning for Quantum State Preparation with Weak Nonlinear Measurements,
R. Porotti, A. Essig, B. Huard, and F. Marquardt; arXiv: 2107.08816



Side-note: Continuous actions



continuous action a = u + 0'5\

p(a) normal-distributed random variable

a
output: action average 4 and spread ¢

Input



A small aside:
baselines
(reducing variance)



Policy Gradient

ZE alnﬂ'g &t‘St)]

Increase the probability of all action choices in the
given sequence, depending on size of return R.

Even if R>0 always, due to normalization of probabilities
this will tend to suppress the action choices in
sequences with lower-than-average returns.

Abbreviation:

B 81I1P@(7‘) B 81117‘(‘9(&75‘875)
“k= "5, _zt: a0,
OR

00, EIRG]



Policy Gradient: reward baseline

Challenge: fluctuations of estimate for return gradient
can be huge. Things improve if one subtracts a constant
baseline from the return.

R Olnmg(as|se)
a5 = D El(R—b)—— =]

This is the same as before Proof:

ZP@ 81nP9 0«9kZP6

k

However, the variance of the fluctuating random
variable (R-b)G is different, and can be smaller
(depending on the value of b)!

Note: b can become state-dependent!



Optimal baseline

Define X, = (R — by)Gy
Minimize Var[X,] = E[X}] — F[X:]* = min

oVar [X k]

=0
Oby,

Optimal baseline: b E[G%R)]
CEG]

- 0ln Py(7)
0,

A@k — —nE[Gk(R — bk)]

G




random walker toy example

10

<
w0

o
(e

e
h
T

probability s (up)

o
wn

i ' 3 learning attempts

strong fluctuations!

04
0

50 100 150 200 250 300 350 400

trajectory (=training episode)

(This plot for N=100 time steps in a
trajectory; eta=0.001)



Spread of the update step

Y = Ny — Ny €= Nyp — N/2 X=Y+c¢Y

(Note: to get Var X, we need central moments é;gepstate
of binomial distribution up to 4th moment) prefactor of 2)
~ N3

120

100 |

0 1 1 1 1
0.0 0.2 04 0.6 0.8 10

me(up)  (This plot for N=100)



Optimal baseline suppresses spread!

Y =Nugp — Ny ¢=Nyp—-N/2  X=(Y+c)Y
with optimal baseline:

X' =Y +c—bY b=

140

120

100 |

me(up)  (This plot for N=100)



Example:
AlphaGo
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Among the major board games, “Go” was
not yet played on a superhuman level by any
program (very large state space ona |9x19

board!)
alpha-Go beat the world’s best player in 2017



AlphaGo

First: try to learn from human expert players

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

Ao Ologp (als)
Oo

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-

Silver et al.,Mastering the game of Go with deep neural networks
and tree search” (Google Deepmind team), Nature, January 2016



AlphaGo

Second: use policy gradient RL on games played
against previous versions of the program

to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps ¢ < T. The outcome z;,= £ r(sy) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step f: +1 for winning and —1 for losing. Weights are
then updated at each time step ¢ by stochastic gradient ascent in the
direction that maximizes expected outcome?”

dlog p,(a|s:)
z
op

Apx

t

Silver et al.,Mastering the game of Go with deep neural networks
and tree search” (Google Deepmind team), Nature, January 2016



AlphaGo

Policy network

P, (@ls)

l‘s‘

S *Note: beyond policy-
- gradient type methods,
this also includes another

algorithm, called Monte
Carlo Tree Search

S

Silver et al.,Mastering the game of Go with deep neural networks
and tree search” (Google Deepmind team), Nature, January 2016



AlphaGoZero

No training on human expert knowledge

— eventually becomes even better!

5000 -

4000 -

3000 -

2000 -

Elo Rating
S
o
-

o
1

-1000 -

—2000 -

-3000 -

—4000 -

=== Reinforcement Learning
= Supervised Learning
=== AlphaGo Lee

| | 1

10 20 | _30 | 40 50 60 70
Training time (hours) Silver et al, Nature 2017



AlphaGoZero

Ke Jie stated that "After humanity spent thousands of
years improving our tactics, computers tell us that humans
are completely wrong... | would go as far as to say not a
single human has touched the edge of the truth of Go."



Q-learning



An alternative to the policy gradient approach

Introduce a quality function Q(s,a) that
predicts the expected future return for a given

state s and a given action a.

Deterministic policy: just select the action with
the largest Q!

Watkins and Dayan 1992






"value" of a state as color V(s) = E[R]| s]




"quality” of the action "going up"  O(s,a) = E|R| s, a]

<«




Introduce a quality function Q that predicts the
future return for a given state s and a given
action a. Deterministic policy:just select
the action with the largest Q!

Q(s¢,a:) = E|Ry|s¢,a;] (assuming future
steps to follow the

“Discounted” T / policy!)
future return: Ry =) ryyt "

=t depends on state
Reward at time step t: 1y R PN S
Discount factor: 0<~<1 learning somewhat

easier for smaller
factor (short
memory times)

Note: The ‘value’ of a state is V(s) = max,Q(s, a)
How do we obtain Q?



Q-learning: Update rule

Q(st,at) = E|R|st, a]

T
R, = 2 Y T =r+ YRy

Bellmann equation:

Q(siar) = Elr + maxa@(e1ya) s, o

future return R,
using Q-policy




Q-learning: Update rule

Bellmann equation:
Q(Sta a't) — E[Tt - /ymaXaQ(St—l—lv CL) ‘Sta a't]

In practice, we do not know the Q function yet, so
we cannot directly use the Bellmann equation.
However, the following update rule has the correct Q
function as a fixed point:

Qnew(st, Cbt) — QOld(Sta at) + Oé("“t + VmaXaQOld(StHa CL) — QOld(St, at))

will be zero, once
we have converged

small (<I) update  to the correct
factor

If we use a neural network to calculate Q, we have to
train it to yield the “new’” value in each step.



"quality” Q(s,a) of the action "going up” as color

N

state s = location



"quality” Q(s,a) of the action "going up” as color

state s = location



"quality” Q(s,a) of the action "going up” as color

state s = location



Q-learning: Exploration

Initially, Q is arbitrary. It will be bad to follow this Q all
the time. Therefore, introduce probability € of
random action (“‘exploration”)!

Follow Q:“exploitation”
Do something random (new): “exploration”

“e-greedy”

Reduce this randomness later!



Q-learning: Experience replay

Store states and actions from past trajectories, revisit
them, use them to update Q (it has changed in the
meantime!)

[side-note: it is not possible to re-use states&actions in
policy gradient (straightforwardly), since these need to
be sampled according to the current policy, not some
old policy]



Q-learning:
Example (Atari games)



Example: Learning to play Atari Video Games

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

(SRS R S AS RS B
SECTYOR (B

last four 84x84 pixel images as input [=state]
motion as output [=action]



Example: Learning to play Atari Video Games

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

Convglution Convglution Fully cgnnected Fully cgnnected

No input
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Playing Atari video games, sometimes beyond human level
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Example: Playing Atari video games

neural network observes screen and figures out a
strategy to win, on its own

e.g.“Breakout”  (DeepMind team, 2013)
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Example
’
t-SNE visualization of .

“Human-level control through deep reinforcement learning”, Mnih et al., Nature, February 2015

last hidden |



Advantage Actor-Critic approaches

(combining Q learning and
policy gradient)



"value" of a state as color V(s) = E[R]| s]




Basic idea (roughly): Learn value function and use it as a
state-dependent baseline for the return!

In policy gradient, replace the return by:
estimated value (learned)

/

R—A=r+yV(s.,)— V()
less noisy estimate for return

"How much is the return for this particular action
above the average, given the current state?”

"Advantage” E[A,|s,a] = QO(s,,a,) — V(s,)

How to learnV?
oV, (s,)

Ap~ Y EL{r+ 7V, (s41) = V,(5)) |




Modern versions:
e.g. TRPO and PPO

Pro tip: Use PPO as a modern allrounder reinforcement
learning method if you don’t know anything particular
about your problem

For these more advanced methods, use available RL
libraries, for examPIe:
"(stable) baselines”, "tensorflow agents’, ...

You just implement the environment and select the
hyperparameters of the RL approach (and possibly
provide the agent’s network structure)



Summary:
Advantages & disadvantages
of model-free RL



Discover Feedback Strategies
(beyond GRAPE etc.)

No feedback: A" strategies (A #actions N #steps)
With feedback: AM" strategies (M #msmt outcomes)

Model-free

No need to develop/fit/calibrate model/equations for
dynamics of the world/the device

...can learn on real devices, with all imperfections



RL with deep neural networks:
Handle arbitrary observations

(images, videos, measurement results of any kind,
sentences, graphs, ...)

Need to see many evolutions!
tens of thousands

Cannot discover 'isolated/rare-event’ strategies
(also true for any other non-domain-specific algorithm)



Reinforcement learning
for guantum physics



Quantum control

&

traditional: numerical techniques like GRAPE

new machine-learning techniques:

model-free (implicitly learn model from behaviour)
can easily include feedback
profit from computer science method development



Quantum control

Bang-bang control (dynamical decoupling)

Bukov et al PRX 2018 (Mehta group BU)
(training can encounter glassy dynamics)

Q learning, table-based



Producing new experimental layouts

combine optical
elements to produce
highly entangled states

Briegel group

Melnikov et al
PNAS 2018
'projective simulation’ RL technique




Adaptive quantum
metrology

RL (Particle Swarm)
Hentschel et al.

PRL2011  State preparation in
spin chains

RL(Q learning)
Bukov et al. PRX 2018

?

Discover optical experiments

RL (Projective simulation)
Melnikov et al. PNAS 2018




Adaptive quantum Quantum error correction

metrology Deep RL (policy gradient)
RL (Particle Swarm) Foesel et al. PRX 2018
Hentschel et al. 2-qubit control
"RL201T  state preparationin | Deep RL (TRPO)
spin chains Niu et al. Qu. Inf. 2019
RL(Q learning) Qu. transport

Bukov et al. PRX 2018 Porottl et al 2019

?

Discover optical experiments Surface code

RL (Projective simulation) Sweke etal 2018
Melnikov et al. PNAS 2018 Control of qubits and spin chains

Deep RL (PPO)
August et al. 2018




B S e L Quantum error correction

metrology Deep RL (policy gradient)
RL (Particle Swarm) Foesel et al. PRX 2018
Hentschel et al. 2-qubit control
PRL 2011 State preparation in Deep RL(TRPO)
spin chains Niu et al. Qu. Inf. 2019

RL(Q learning) Qu. transport
Bukov et al. PRX 2018 L Porotti et al 2019

?

Discover optical experiments Surface code

RL (Projective simulation) Sweke etal 2018
Melnikov et al. PNAS 2018 Control of qubits and spin chains

Deep RL (PPO)
August et al. 2018




Case study:
Reinforcement learning
for quantum error correction

Physical Review X 031084 (2018)

Thomas Fosel, Petru Tighineanu, Talitha Weiss, FM



Goal: Apply neural-
network based
reinforcement

learning to quantum
o] o)A [£3.







RL-agent RL-environment



Initialize qubit here: |¥(0)) = a |0) 4+ 3 |1)

t CNOT CNOT
CNO

™ % ~_ qubits

noise




Goal: discover error correction strategies from scratch,
without human guidance, for arbitrary noise and
hardware constraints



temporal correlations of noise

Quantum Error Correction: many approaches
A

dynamical
decoupling

adaptive noise
estimation

stabilizer codes decoherence-free
subspaces

spatial correlations of noise

>



temporal correlations of noise

Quantum Error Correction: many approaches
A

ce-free

spatial correlations of noise

>



This approach requires nhumerical simulation

By definition, we cannot classically simulate a full-scale
quantum computer

> most useful for optimizing the performance of small
quantum modules ~O(5) qubits

Advantage:
flexibility - hardware-adapted strategies



Modular approach to quantum computation

i »

~m

proposed for multiple
hardware platforms,
including superconducting
circuits, ion traps, NV
centres

gh “output
circuitry

Q
L"\'\'Tum comPY”

input
_ circuitry

image from Brecht et al., Devoret/Schoelkopf labs,
npj Quantum Information 2, 16002 (2016)
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At present: applied neural-network-based
reinforcement learning for up to 5 qubits, for
several different physical scenarios

Demonstrated reinforcement-learning as a
flexible, generally applicable method

(no need to change method for different
scenarios)



action (gw\
e neural ///

o & 2 \ s o Network

-

.‘v‘
P B

o oo
measurement
RL-agent RL-environment

example: 4 qubits, measurements possible on
all, CNOTs between all, bit-flip noise on all




The network...
b revere
avoids catastrophic
4. atter 60 epod IT€ASUrEmMents
- finds repetition code

—j encoding sequence

after 160 ep{ diSCOVErs parity

N B R R R R detections
= =1 - DD

v WY N\ \L/ \LJS \LJ

applies them
periodically

time-step

(showing 20 out of 200 time steps)

Physical Review X 031084 (2018)



S/ Training Progress
su%)uz
¢

measure of success=
"recoverable quantum information”

09 1

0 500 2500 22500
training epoch (simulation run)

Physical Review X 031084 (2018)



Can we understand what the
network does?

"opening the box"



“How does the network operate?”
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“How does the network operate?”
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“How does the network operate?”

e_0._o

300 neurons in last hidden layer!
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(pictures:Wikipedia, ‘Strebe’)




usters of similar network responses!

method from machine learning field



Visualize density matrix of
given quantum state:
Decompose into eigenstates

eigenstates probabilities (eigenvalues)
0000+0080 | mum

C000+0000
O00O0+0000
OO0 00 +0000

CO000+0000

3 qubits used for encoding
a |011) 4+ 3 [100)

| qubit for ancilla (measurement)

we don’t provide any of this, the
network discovers this on its own...
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unexpected
measurement
indicates error
and triggers
more complex
sequence!

Ce00+0000
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C000+0000
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0000 +0000
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Network discovers something new

Even if encoding is known: Gate sequences
for error detection/correction depend on
hardware-specific constraints (like
connectivity, available gates)!



What about more complex
qubit connectivities ?

(more complex than all-to-all)



Different topologies

Physical Review X 031084 (2018)



Different topologies
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Physical Review X 031084 (2018)



Different topologies
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Physical Review X 031084 (2018)



Different topologies

Physical Review X 031084 (2018)



Different topologies
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Physical Review X 031084 (2018)



Example: measurement errors
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The exact same program also
discovers strategies that are
unrelated to stabilizer codes...



Different class of scenarios: Dephasing by a noisy field

200

UL

“ancillas”, feel
same noisy field

“data qubit”



Different class of scenarios: Dephasing by a noisy field

200

UL

“ancillas”, feel
same noisy field

“data qubit”

Collective dephasing:

A(t) = B()Y 16

—
time



Network measures ancillas to estimate noisy field

Network discovers adaptive noise estimation strategy
Strategy = decision tree
@., MY2
Dol

—>  MY3
‘@-} MX2

}—}I\/IYZ
@.> MX2
-’69 — 4@ MY2




We can use the same
"hyperparameters” (network
structure, learning rate, ...) for
all these tasks



0.99

Koll)

Ro(T)

a) bit-flip:
main text values

0.9
0 A T
0 25000 50000
epoch
d) corr. noise:
main text values
1.0
0.8 A
0.6
0.4 -
0.2 1
0.0 T
0 7500 15000
epoch

b) bit-flip: c) bit-flip:
faster decay less time steps
0.99 -
1 — all-to-all
. —— chain (1 msmt)
0.949 —— chain (all msmts)
| — triangle
all-to-all with
7 ] small msmt noise
i - all-to-all with
- . large msmt noise
0 . 0 - T
0 25000 50000 0 25000 50000
epoch epoch
e) corr. noise: f) corr. noise:
faster decay less time steps
1.0 1.0
0.8 - 0.8
0.6 - 0.6 1
0.4 - 0.4 -
0.2 0.2 —— 4 qubits
—— 3 qubits
—— 2 qubits
0.0 T 0.0 .
0 7500 15000 0 7500 15000

epoch

epoch






Naive approach “will not worl

Reward: Overlap [(¥(0)|U)]
(averaged over initial states)

Policy networl: actions depending on measurements

bit-flip
CNOT

measurement

measurement results
action probabilities



Naive approach “will not work

.. o
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Naive approach

Shortest useful gate sequences already quite long
e.g. for 20 possible gates, in 10 time steps

201V possibilities

we will later consider sequences of 200 time steps!



Naive approach “will not work

: A4 A :: A
'h"""'l‘. =g
L

incomplete
strategies

“idle”
strategy

smart (& complex)
strategy

-R (negative return)



Two key concepts

As much information as possible

Construct smart reward



measurement

RL-agent RL-environment

only measurement results! time







“As much information as possible”




Quantum state as input!

action (gate)

neural
» » Network

RL-agent RL-environment

But wait! Isn’t this cheating?

In an experiment, we cannot do this!
And the agent now knows the quantum state to preserve!!



Want to preserve arbitrary quantum state!

Consider “completely positive map”
that describes the dissipative evolution of

the whole quantum system
p(t) = @[p(0)]
1

ﬁ(O) = 5(1 + X071 + ya'yl - Za—zl) & PRest

n = (z,Y,2) Bloch vector of logical qubit state

In practice: need to evolve only four different
density matrices simultaneously; feed all of them to

the network.

Ask network to preserve arbitrary state using
the same gate sequence!



In an experiment, we only have access to
measurement results!

teach ¢)

a)
.0 0 ‘_4‘ ©

‘ —t “
"’V )
& N
_
\‘

A Y
0\*
y 4

\

2/ @) @

state-aware network recurrent (memory) network
gquantum state measurement results

action probabillities
“Two-stage learning”



g Training the recurrent network

...works very well and reliable!
............... 1.00

WM iy

..............................................................................

"

recoverable [
0.95

0.5 - g.info
overla
initial/final ”

0 20000 40000 O 20000 4oooo
training epochs

Physical Review X 031084 (2018)



Analyzing the recurrent network

O0CO00C+0000 mmm 000 +0000 W 000 +0000 mmm 0000 +0000 mm OOCOO+0000 mm
cOoeOC+e0000 | ceeC+e000 m Oe00+0000 1| Ce00+0000 | cOoeOC+e000 |
C0e00O+0000 | 0000 +0000 | O000+e0000 I Ce00 +0000 | Ce00+0000 |
OCe00+e00e | COCeo0+0000 | 000 +@000 I C000+0000 | OC000+000@ |
000 +0000 | O000+e000 | cOCe0+0000 | O000O+e0Cee | oJeleX EX X JOIONN
Ce00+0000 | O000+e000e | C000+0000 | 000 +000@® | OC00e+0000 I

neuron

———

time LSTM neuron activations

LSTM=long short-term memory (Schmidhuber, Hochreiter)
identify “switches” and “counters”

Physical Review X 031084 (2018)



“Smart reward scheme”




“Smart reward scheme”

Find a general measure of the amount of
quantum information that can still be
retrieved from a multi-qubit device...

...after complex entangling gate sequences!
..in the presence of noise!

...using some smart error detection/
correction scheme!
(without knowing that scheme!)




|dea: initially orthogonal states
should remain distinguishable!

probability to distinguish by optimal measurement:

S = |
9 P P—mi |1



Define
“Recoverable Quantum Information”

.1, )
Rq = ming o || i — p—i |1

(worst-case initial state defines success of quantum memory)

Physical Review X 031084 (2018)



Key result:

network discovering from scratch
quantum error correction
strategies based on feedback

Physical Review X 031084 (2018)

Thomas Fosel, Petru Tighineanu, Talitha Weiss, FM



future: apply to other physical settings

Ancilla

rotation Readout
input

(Schoelkopf, Devoret lab 2016)

Bob
displacement

Readout
output

Al

== Ye=oglieN\ VE
e . p=TmmA N

—.‘;— ' l — — ——— —

(Monroe, Kim Science 2013)



More efficient physics simulation
CHZ acceleration

Other RL algorithms
Monte Carlo Tree Search

experiments? need fast NN & feedback!
FPGA hardware implementations?



Case study:
Reinforcement learning
for quantum circuit
optimization

arXiv 2103.07585

Thomas Fosel, Murphy Yuezhen Niu, Florian Marquardt, and Li Li



Quantum Circuit Optimization:
reduce gate count / depth / etc.!

qubit 1

¥ ¥

qubit2 —R”Z l PXHRZ l
qubit 3 D PX .,

5

D
qubit 4 ﬁRZ-PX l T l
qubit 5 RZ ., O RZ

moment (physical time)




NISQ devices: Quantum Circuit Optimization critical
...and needs to be hardware-dependent

[not on an abstract level designed for large-scale
fault-tolerant circuits]
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Transformation rules




Deep reinforcement learning approach

equivalent, more
original circuit efficient circuit

circuilt
optimization

agent

P
A\ % A%
17 SXURZ
Pany a N
o O1PX o
Pany
PHRZHPX \
RZ Y Ve 7 \
% el

action

. J

hardware-efficient, cross-platform, autonomous, reliable



Choices: States, Agent, Actions, Rewards

policy 7(als)

—-@

state value V(s)

«l 7 //

agent=
convolutional neural network

Reward: reduction in gate count, depth, or combination
(possibly: gate-dependent, decoherence estimate, ...)

Technique: Advantage Actor Critic (namely: PPO)



Training on Random Circuits

random gate dataset preprocessing expansion via

combination initial pruning random transformations

example
circuit

optimization
by RL agent

values for
trained agent
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depth d

gate count n

100
80 A

60 A

40 4%

Training on Random Circuits: Progress

RL training progress

in-game progress (end of training)

—— moving average

(dy) =37.15+0.01

o 2 .. : . : .. L o : e - . * P e * ]
AV TG KPR AR W5 1Y -:_'.'..-*'.:\:.-.'.);mu -

TR ST e F =

e

average over

3200 circuits

5 example
circuits

(d) =29.51+0.10 (d)=27.20 = 0.07

(ng) =97.86 +0.33

(n)=106.23 +0.40

(n)=97.86+0.33

400 600 800

epoch

200 1000 O

200 300 400 500

transformation round

100 600

1 epoch = 32 episodes



change in gate count n

Performance

+30%

RL (after |-week
training):
2 min per circuit

+0% -

—30% |+,

change in gate count n

—-60%
+30% =
o S
7 .. WY ¢ % :{!;E\v’. o /l
+0% - R Z : .
| B o8- Simulated annealing:
s SRR |-3 d per circuit
-30% 1 23 simulated
v annealing
0 1 (in 200k rounds)
—060% —3b% ié% +30%

change in depth d



Large-scale Random Circuits
(same agent, now applied to larger circuit)
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Convolutional network permits successful
transfer of learned behaviour to much larger
circuits: local environment of gates is relevant!

simulated annealing: ~ | week, comparable to full
training time for general RL agent (that runs in 3-5 h)



Application to a real algorithm o ®

_f

Example:
Quantum Approximate Optimization Algorithm (QAOA)
— specifically, for the MaxCut problem

X(Bc)
Y4
° I T . (Yc) =
.. l : logical
y l T = circuit

v I 1 m
MaxCut " forc=1 C
graph 0 0T

P ] &P ]
| - compiled
o ‘ ‘ -  circuit

QAOA: Farhi et al, 2014
Experimental MaxCut-QAOA (Google): Harrigan et al, 2021




MaxCut Circuit Optimization

o0
@ ®
o O
before optimization (d =75, n=142)
Tod o - om L D o O o - -
“ﬂ_“-ﬂl-lﬂ-ﬂl-l“-"-ﬂl-“ﬂ““-“ﬂﬂ-ﬂﬂ“-"-ﬂ
o«-lnn ¢t L ) ™1 un . ) ™1

optlmlzed by agent trained on random circuits (d =68, n =138)

‘ ==‘ - ¢ ¢ 1 P /‘l\/L-_\f P D ° D
eom

optimized by specialized agent (d=66, n= 138)
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Future: Quantum Circuit Dataset

Algorithms Hardware

QAOA, Shor, gate set,
Variational Quantum connectivity, ...
Eigensolver, ...

+ parameters
(e.g. problem instance)

Compiled
Quantum Circuits

Training




