
Reinforcement Learning and Evolutionary Strategies
for

Quantum Error Correction
Summer School: Machine Learning in Quantum Physics and Chemistry

Evert van Nieuwenburg

1

Warsaw, Poland (2021)

https://ml2021.ckc.uw.edu.pl/

There are three main concepts for this talk
Don’t hesitate to ask!

Stabilizer codes

Quantum Computation

Reinforcement Learning

???

Deep Q-Network

Evolutionary Strategy

Policy Networks

There are three main concepts for this talk
Don’t hesitate to ask!

Reinforcement Learning

???

Deep Q-Network

Stabilizer codes

Quantum Computation

Evolutionary Strategy

Policy Networks

Reinforcement learning is fun
Locomotion

deepmind.com/blog/article/producing-flexible-behaviours-simulated-environmentshttps://openai.com/blog/emergent-tool-use/

Multi-Agent Hide & Seek

https://deepmind.com/blog/article/producing-flexible-behaviours-simulated-environments
https://openai.com/blog/emergent-tool-use/

Reinforcement learning is fun
Locomotion

deepmind.com/blog/article/producing-flexible-behaviours-simulated-environmentshttps://openai.com/blog/emergent-tool-use/

Multi-Agent Hide & Seek

https://deepmind.com/blog/article/generally-capable-agents-emerge-from-open-ended-play

https://deepmind.com/blog/article/producing-flexible-behaviours-simulated-environments
https://openai.com/blog/emergent-tool-use/
https://www.youtube.com/watch?v=UHUr_iTThxk

Computers can learn to play games
Reinforcement learning is pretty good at most games!

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmarkhttps://en.wikipedia.org/wiki/AlphaGo

Reinforcement learning in a nutshell
Intuitive: learning from trial and error

AgentEnvironment

Actions

Rewards

State

A
St

Rt

http://www.incompleteideas.net/book/the-book.html
Sutton & Barto

AgentEnvironment

Actions

Rewards

State

A
St

Rt

The agent can observe the (state of the) environment
If not, the environment is partially observable

AgentEnvironment

Actions

Rewards

State

A
St+1

Rt+1

The agent can act on the environment
The environment defines which actions are possible

a ∈ A

Agent

The agent receives a reward
A discount factor regulates near- vs long-term rewards

a ∈ AEnvironment

Actions

Rewards

State

A
St+1

Rt+1

Rt+1

Goal: Maximize the score (cumulative reward r)

r = ∑
t

γt Rt

discount factor
0 < γ ≤ 1

Example environment for TicTacToe
Assume we are playing as X

State Actions Rewards

1 = place X on square 1

2 = place X on square 2

3 = place X on square 3

9 = place X on square 9

⋮ -1 if O wins or draw
0 if not finished

+1 if X wins
Rt ={

Each of these games can be formulated similarly

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmarkhttps://en.wikipedia.org/wiki/AlphaGo

The goal for the agent is to learn an optimal policy
Following this policy, the agent will maximize its total expected reward

= π(a |s)

Example policy for TicTacToe

π()=6 1 π()=9 1

A RL problem is modelled as a Markov Decision Process
For a more complete intro, see next week’s lectures by Florian Marquardt!

Qπ(s, a) = 𝔼π[Gt ∣ St = s, At = a]
“How good is it to be in state s and take action a?”

Gt =
∞

∑
k=0

γkRt+1+k“The future (discounted) reward”

Vπ(s) = 𝔼π[Gt ∣ St = s]
“How good is it to be in state s?”

(think: Chess Grandmaster looking at chess board 🤔)

Q-learning is a way to find the optimal policy

“How good is it to be in state s and take action a?”

Finding the optimal Q-function: The Bellmann Equation

Q*(s, a) = 𝔼π[Rt+1 + γ max
a′

Q*(st+1, a′) ∣ St = s, At = a]

π(s) → max
a

Q*(s, a)

Value iteration Monte Carlo estimation Temporal Difference Learning

Q(s, a) ← Q(s, a) + α[Rt+1 + γ max
a′

Q(st+1, a′) − Q(st, a)]

A one-slider on Deep-Q learning
Instead of storing Q(s,a) as an array, use a network to parameterise it

π(s) → max
a

Q*(s, a)

-1
0
0

+1
+1
0
-1
0
0

0
0.11
0.08

0
0

0.6
0

0.11
0.1

Pick action 6

There are three main concepts for this talk
Don’t hesitate to ask!

Stabilizer codes

Quantum Computation

Reinforcement Learning

???

Deep Q-Network

Evolutionary Strategy

Policy Networks

The layers of abstraction of a quantum computer
Quantum error correction is likely necessary for large Qcomputers

Implementation of physical qubits
Logical Qubits

Quantum circuits

Compiler

Execute

(Superconducting, Trapped Ions, Topological, …)

Quantum software
(Cirq, Qiskit, Quirk, Pennylane, …)

A very brief recap of the decoding problem
The name of the game is redundancy

0 → 000
1 → 111 0110 → 000111111000

010⏟
0

111⏟
1

011⏟
1

001⏟
0

Errors

000111111000 → 0110
Correcting

Decoding

|0⟩ → |000⟩ |000⟩ + eiϕ |010⟩ + … |000⟩
Measurement

So we need a way to encode (redundancy!) a qubit in such a way, that we can know
an error happened (decoding), and fix it (correction), without destroying a superposition!

A very simple quantum code
For bitflip errors only (for now)

|0⟩ →
1

2 (|000⟩ + |111⟩)
Z1Z2 |0⟩ = |0⟩

X1 |0⟩ =
1

2 (|100⟩ + |011⟩)

Z1Z2X1 |0⟩ = − |0⟩
Z2Z3X1 |0⟩ = |0⟩

Z2Z3 |0⟩ = |0⟩

Z1Z2 Z2Z3

I
X1
X2

X3

1
−1
−1 −1

−11

1
1

A very simple quantum code
For bitflip errors only (for now)

|0⟩ →
1

2 (|000⟩ + |111⟩)
|ψ⟩ = α |0⟩ + β |1⟩

S1 S2

I
X1
X2

X3

1
−1
−1 −1

−11

1
1

⟨ψ̃ |S1 | ψ̃⟩ = 1
⟨ψ̃ |S2 | ψ̃⟩ = − 1

S1 = Z1Z2 S2 = Z2Z3
| ψ̃⟩Error

Stabilizer codes
Stabiliser measurements result in a syndrome that identifies errors

S1
S2
S3

S4

=

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

Each single qubit error causes a -1 pattern of ‘violated stabilisers’

Si |0⟩ = |0⟩ ∀ i Si |1⟩ = |1⟩ ∀ i ⟨0 |1⟩ = 0

Syndrome

The toric code is a famous stabilizer code
Use many (physical) qubits to encode a pair of ‘logical’ qubits

The toric code is one way of getting qubits

This system has periodic boundaries (cf the surface code)

Use many (physical) qubits to encode a pair of ‘logical’ qubits

The toric code encodes 2 logical qubits

All ground states have Plaquette = +1 and Star = +1

They are built out of four degenerate ground states

<latexit sha1_base64="ZfjGzIWQLu2Fi7Wx71pd4dxBdrY=">AAACQHicbVBNS8NAEN34bf2qevSyWAQvLYmIehGKXjxWtCo0pWy203Zxk427E7GE/B1/iGevCv4DPYlXT25qDlYdWHi8NzNv5wWxFAZd98WZmJyanpmdmy8tLC4tr5RX1y6MSjSHJldS6auAGZAigiYKlHAVa2BhIOEyuD7O9ctb0Eao6ByHMbRD1o9ET3CGluqU6yf0kFZ9k4Sd1A8ZDrhkceoj3GEaS3aTACJkWUYbtEqLtpFokGlLn3XKFbfmjor+BV4BKqSoRqf85ncVT0KI0HoZ0/LcGNsp0yi4hKzkJwZixq9ZH1oWRiwE005Hl2Z0yzJd2lPavgjpiP05kbLQmGEY2M78GPNby8n/tFaCvYN2KqI4QYj4t1EvkRQVzWOjXaGBoxxawLgW9q+UD5hmHG24Yy75blRKmqxks/F+J/EXXOzUvL2ae7pbqR8VKc2RDbJJtolH9kmdnJAGaRJO7skjeSLPzoPz6rw7H9+tE04xs07Gyvn8AslWsb0=</latexit>

H = �
X

plaquette

P �
X

star

S

Physical qubits have errors

Error takes us out of the 4-fold degenerate ground state space

They can have Pauli X errors, or Pauli Y errors, or Pauli Z errors

We can not observe the errors (would collapse)
But the plaquette operator changes sign!

= +1

= -1

Errors leave behind a syndrome

More errors move syndrome endpoints around
Pairs of syndrome points connected by an error string

If errors happen to do this…
…wait for it

No more syndrome!
Errors occurred, but we are now back in the groundstate space!

This error string forms a contractable loop

Alternative history
Error strings connecting boundaries are logical operations!

This error string forms a non-contractable loop

|ψ⟩ = |00⟩

|ψ⟩ = |01⟩

This is a “distance” d=4 code

QEC = finding the right error string
This is a single player game: Merge syndrome points, one move at a time

QEC = finding the right error string
This is a single player game: Merge syndrome points, one move at a time

QEC = finding the right error string
This is a single player game: Merge syndrome points, one move at a time

QEC = finding the right error string
This is a single player game: Merge syndrome points, one move at a time

You thought you won, but alas…
Error string wraps around boundaries (non-contractable)

But in this scenario, you did win!
No error string connecting boundaries (contractable)

There is a (near-)optimal solution
The “Minimum Weight Perfect Matching” (MWPM) algorithm

The near-optimal solution
The “Minimum Weight Perfect Matching” (MWPM) algorithm

Shorter string is likelier

Physical qubit error probability: p
Error string of length L probability: pL

Find shortest string! (= MWPM algorithm)

Tracking logical fidelity versus error rate
This is a property of the correction algorithm

0.05 0.10 0.15

Bit-flip error rate p

0.5

0.6

0.7

0.8

0.9

1.0

L
og
ic
al

fi
d
el
it
y

MWPM d = 3

MWPM d = 5

MWPM d = 7

MWPM has a “threshold”
Not all correction algorithms have a threshold; having one is good!

0.05 0.10 0.15

Bit-flip error rate p

0.5

0.6

0.7

0.8

0.9

1.0

L
og
ic
al

fi
d
el
it
y

MWPM d = 3

MWPM d = 5

MWPM d = 7

Threshold

State Actions Rewards

-1 if logical error

0 if syndrome

+1 if no logical error
Rt ={

The Toric Game
A reinforcement learning environment for QEC

Act with Pauli X, Y or Z on qubit

Use translational invariance

X,Y,Z on 4 qubits around syndrome
(12 actions)

-OR-

Move syndrome to reference loc

(actions)3d2

The Toric Game
As pseudocode

https://gym.openai.com/

http://www.scigym.net/

https://gym.openai.com/
http://www.scigym.net/

Can an AI learn to play this game?

Yes it can!

Physical Review Research 2, 023230 (2020)

It does better than MWPM for depolarising noise!

Distance 5 and 7 required 900.000 and 9.000.000 parameters in the network!

Even works for faulty measurements

Mach. Learn. Sci. Technol. 2, 025005 (2021)

Distance 5 required 2.000.000 parameters in the network!

There are three main concepts for this talk
Don’t hesitate to ask!

Stabilizer codes

Quantum Computation

Reinforcement Learning

???

Deep Q-Network

Evolutionary Strategy

Policy Networks

The NEAT algorithm
“Neural Evolution of Augmented Topologies”

What is “Neural evolution”?
First, look at ‘evolutionary strategies’ or ‘genetic algorithms’

Individual

Fitness: 3

Individual

Fitness: 1

Individual

Fitness: 3

Individual
Fitness: 3

IndividualFitness: 5

Individual
Fitness: -2

Individual

Fitness: 3

Population Pick the top x% (by fitness)

Population size N

While populationsize < N:
‘Combine’ two individuals (parents)

and generate new individuals (offspring)

For each individual:
With probability p,

apply one of multiple ‘mutations'

Re-calculate fitness for each individual

A quick example
A genetic sudoku generator

Individual: Sudoku puzzle
Fitness: +1 for every row, column, block that is correct

Cross-over example:

Take top 5 rows of parent 1, bottom 4 of parent 2

(and reverse)

Mutations: randomly change number

(Or penalty for every violation?)

In NEAT, individuals are networks

Typically ~100 members

After multiple generations

The NEAT algorithm uses a genome

Genomes will get mutations
Randomly selected

Without crossover, this would be random
The key feature of NEAT is having a ‘meaningful’ crossover

The networks are policy networks
As opposed to Q-learning

πθ(s)

-1
0
0

+1
+1
0
-1
0
0

0
0.11
0.08

0
0

0.6
0

0.11
0.1

Pick action 6

Features and advantages of NEAT
Compared to gradient methods and other networks

Gradient-free (good?)

Straightforward ‘transfer learning’

Optimizes network architecture

Three to four orders of magnitude fewer parameters!

A mutation often leads to a drop in fidelity at first

Start from simplest -> Add complexity when necessary!

Uses speciation

Transfer learning
Transplanting solutions due to genome representation!

Transfer learning
Transplanting solutions due to genome representation!

0 25 50 75 100

Generations

0.0

0.2

0.4

0.6

0.8

1.0

L
og
ic
al

fi
d
el
it
y

d = 5

p = 0.01

p = 0.05

p = 0.1

p = 0.15

0 25 50 75 100

Generations

0.0

0.2

0.4

0.6

0.8

1.0

d = 7

Random

Transplanted

The NEAT Algorithm
As pseudocode

Learning = Optimising the weights
Typically done using gradient descent

[12] R. Sweke, M. S. Kesselring, E. P. L. van Nieuwenburg, and J. Eisert, Reinforcement learning decoders for faulttolerant quantum computation, Machine Learning: Science and
Technology 2, 025005 (2021).

[15] P. Andreasson, J. Johansson, S. Liljestrand, and M. Granath, Quantum error correction for the toric code using deep reinforcement learning, Quantum 3, 183 (2019).
[14] D. Fitzek, M. Eliasson, A. F. Kockum, and M. Granath, Deep Q-learning decoder for depolarizing noise on the toric code, Phys. Rev. Research 2, 023230 (2020).
[13] L. Domingo Colomer, M. Skotiniotis, and R. Mu˜nozTapia, Reinforcement learning for optimal error correction of toric codes, Physics Letters A 384, 126353 (2020)

0.02 0.04 0.06 0.08 0.10 0.12 0.14

Bit-flip error rate p

0.5

0.6

0.7

0.8

0.9

1.0

L
og
ic
al

fi
d
el
it
y

MWPM L = 3

MWPM L = 5

MWPM L = 7

NEAT L = 3

NEAT L = 5

NEAT L = 7

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Depolarizing error rate p

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
og
ic
al

fi
d
el
it
y

MWPM L = 3

MWPM L = 5

MWPM L = 7

NEAT L = 3

NEAT L = 5

NEAT L = 7

Our agent learns ~MWPM
The real challenge will be other codes + scaling up!

0.02 0.04 0.06 0.08 0.10 0.12 0.14

Bit-flip error rate p

0.5

0.6

0.7

0.8

0.9

1.0

L
og
ic
al

fi
d
el
it
y

MWPM L = 3

MWPM L = 5

MWPM L = 7

NEAT L = 3

NEAT L = 5

NEAT L = 7

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Depolarizing error rate p

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
og
ic
al

fi
d
el
it
y

MWPM L = 3

MWPM L = 5

MWPM L = 7

NEAT L = 3

NEAT L = 5

NEAT L = 7

Stabilizer codes

Quantum Computation

Reinforcement Learning

???

Deep Q-Network

Evolutionary Strategy

Policy Networks

Stabilizer codes

Quantum Computation

Reinforcement Learning

???

Deep Q-Network

Evolutionary Strategy

Policy Networks

Thank you for listening!

Bonus content
Quantum Games!

Quantum TiqTaqToe

www.quantumtictactoe.com

Quantum Chess

www.quantumchess.net

http://www.quantumtictactoe.com

