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Challenging Traditional Beliefs
in Machine Learning



  

1. Neural Networks are a black box algorithm

Common Beliefs



  

2. Prediction performance is limited by Bias Variance tradeoff 

Common Beliefs



  

3. Don’t train your supervised model on unlabelled test data

Common Beliefs
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Fewer Labels



  

3. Dont train your supervised model on unlabelled test data

Common Beliefs

Supervised 
Classification

Semi-
Supervised 
Classification

Unsupervised 
Classification
=clustering

Supervised 
Regression

Semi-
Supervised 
Regression
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Regression
does not exist

Fewer Labels



  

Interpreting Artificial Neural Networks
in the Context of Theoretical Physics



  

Success of Artifical Neural Networks

Image Classification
(Convolutional Network)

                                             Generative Modelling /
                                             Anomaly Detection
                                             (Autoencoders)

            Similarity Detection
            (Siamese Network)



  

(Supervised) Machine Learning with Neural Nets

„Machine learning is the subfield of computer science 
that gives computers the ability to learn without 
being explicitly programmed.“ - Wikipedia
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(Supervised) Machine Learning with Neural Nets

„Machine learning is the subfield of computer science 
that gives computers the ability to learn without 
being explicitly programmed.“ - Wikipedia

Artificial
Neural

Network

Cats

Dogs

?

Dog

Training Data

Test Data

1) What does the Neural Network actually 
    learn?
2) Can this Knowledge help in Scientific    
    Discovery?



  

Overview

✗ Artificial Neural Networks

✗ Interpretation of Convolutional Neural Networks

✗ Interpretation of Autoencoders

✗ Interpretation of Siamese Networks



  

Feed forward neural network

                                                                    Perceptron

 

Input: Data                                       , Label      

Output:

     Goal: choose         and        such that

Artificial Neural Networks



  

Interpretation Techniques



  

 +

Bottleneck Interpretation 
+Correlation Probing Neural Network

Wetzel, Scherzer, PRB 2017

Wetzel, PRE 2017

Wetzel, et al, PRR 2020



  

Looking at the weights

✗ No, works but only for the most simple problems.



  

Influence Functions

✗ Remove specific datapoints or features 
and measure the effect on the performance

✗ Largest change in performance indicates the
most influential data point or feature

Dawid et al, New Journal of Pyhsics 2020



  

Dark Matter

✗ Simulate Dark Matter

✗ Apply symbolic regression at the output of a graph
neural network to recover force equation

Cranmer et al., Neurips 2020



  

Condensed Matter+Correlator Network

✗ Explicit feature engineering layer that probes for correlations

✗ Dominant features correspond to dominant correlations in 
condensed matter system

Miles et al., Arxiv 2020



  

Physical Concepts

✗ Interpretation of autoencoder latent representation

✗ Ask physical questions to be extractable from latent space

Iten et al., PRL 2020



  

Bottleneck Interpretation
+Correlation Probing Neural Network



  

If the neuron contains the 
information of one single 
quantity/obervable

➢ Idea: identify or enforce 
bottlenecks in the network

➢ Perform regression on the 
output of the bottleneck 
neuron

Bottleneck Interpretation

The output of the neuron can 
be mapped via a bijective 
function to the observable

Interpretation is often difficult since information is spread 
over several neurons and layers



  

➢ Data: Monte Carlo samples

➢ Training at well known points 
in phase diagram

➢ Labels: Phase

Supervised Learning
2d Ising Model

➢ Testing in interval containing 
phase transition

➢ Estimate within 1% of exact 
value

Carrasquila, Melko, Nature 2017



  

Feed forward neural network

                                                                    Perceptron

 

Input: Data                                       , Label      

Output:

     Goal: choose         and        such that

Artificial Neural Networks

Natural Bottleneck
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Interpretation Net

➢ Interpretation Net interpolates between a general NN and a 
minimal optimal NN which has the same performance 

➢ Interpretation by reducing the NN capacity in an ordered 
manner until one observes a performance drop

➢ Inspired by extensive physical quantities (averaging layer 
probes for translational invariance of the quantity              )

Interpretation of Neural Network
2d Ising Model

Wetzel, Scherzer, PRB 2017



  

Decision functions

➢                                         Magnetization

➢                                         Expected Energy per site

Deduction visually confirmed:

Note: 

1x2 Network also has                                                               
the Magnetization minimum                                                  
which is easier to find!

Interpretation of Neural Network
2d Ising Model



  

Space time lattice

Quarks on heavy static lattice 
sites. 

SU(2) Lattice Gauge Theory

Gluons on the connections 
between lattice sites are 
described by Matrices



  

Supervised Learning
SU(2) Lattice Gauge Theory

Find phase transition close to 
lattice calculation

Data: Monte Carlo samples

➢ Training at well known points 
in phase diagram

➢ Labels: Phase



  

Deduction confirmed by perfect                                       
correlation between NN                                                             
output and Polyakov                                                                 
Loop order parameter 

➢ Polyakov Loop

Interpretation of Neural Network
SU(2) Gauge Theory



  

Objective: Minimize Reconstruction error

➢ Data: Monte Carlo samples

➢ Train everywhere in phase diagram

➢ Labels: None

(Variational) Autoencoder
2d Ising Model

Encoder Latent Variables

Decoder Output

Input Encoder
Latent 
Variables

Decoder Output

Natural Bottleneck



  

Ferromagnetic Ising model on the square lattice

➢ Latent parameter corresponds to magnetization
➢ Identification of phases: Latent representations are clustered 
➢ Location of phases: Magnetization, latent parameter and 

reconstruction loss show a steep change at the phase 
transition.

(Variational) Autoencoder
2d Ising Model

Wetzel, PRE 2017



  

Siamese Neural Networks

➢ Input : Pair of data points

➢ Label : same / different

➢ Network pair contains identical neural networks with shared 
weights

Natural Bottleneck

Wetzel, et al, PRR 2020



  

Machine Learning
Multi Class Classification

„Machine learning is the subfield of computer science 
that gives computers the ability to learn without 
being explicitly programmed.“ - Wikipedia

Machine 
Learning 
Algorithm

Aleks

Roger

?

Roger

Training Data Test Data

Anna

Estelle



  

Machine Learning
Infinite Class Classification

Reformulation of the Problem:

➢ Teach a maching learning algorithm if two pictures show the 
same class.

                                                          

Machine 
Learning 
Algorithm

?

Test Data

different

same

Reference 
Picture

(Does not need to 
be in training set)

Test 
Picture

same



  

Siamese Neural Networks
Particle in Gravitational Potential

Problem:

➢ Given two observations of positions and velocities, do they 
belong to the same particle trajectory?

SNN Solution:

➢ Prepare Dataset of positive data where the pair is connected 
by solving the equations of motion

➢ Prepare Negative Dataset by permuting positive dataset
➢ Train SNN to distinguish between positive and negative pairs



  

Siamese Neural Networks
Particle in Gravitational Potential

Results:  

Training accuracy : 98%

Test accuracy : 97%

➢ Interpretation by polynomial regression                                 
on latent representation:

➢ Network has learned the angular momentum to infer its 
prediction.



  

Siamese Neural Networks
Lorentz Transformation of Electromagnetic Fields

Problem:

➢ Given two field configurations, can they be transformed into 
each other by a Lorentz transformation?

SNN Solution:

➢ Prepare Dataset of positive data where the pair is connected 
by a Lorentz Transformation

➢ Prepare Negative Dataset by permuting poitive dataset
➢ Train SNN to distinguish between positive and negative pairs



  

Siamese Neural Networks
Lorentz Transformation of Electromagnetic Fields

Results:  

Training accuracy : 95%

Test accuracy : 94%

➢ Interpretation by polynomial regression                                 
on latent representation:

➢ Network has learned the determinant of the field strength 
tensor to infer its prediction.



  

Summary

✗ Interpretation of Artificial Neural Networks is hard because
information is distributed among many layers and neurons

✗ Interpretation is possible by identifying bottlenecks and 
performing regression

✗ Interpretation is constructive and can give insight into the
underlying physics:

Neural Networks applied to phase recognition learn order
parameters or energies

Siamese Networks for similarity detection learn invariants
or conserved quantities



  

Twin Neural Network Regression



  

Overview

Introduction:

✗ Regression

✗ Limits of Traditional Algorithms

Twin Neural Network Regression:

✗ Circumventing Bias Variance Tradeoff

✗ Uncertainty Signal

✗ Semi Supervised Training



  

Introduction



  

Regression assumes there exists a true function with noise that 
models the relation between features and targets.

Using the information contained in a training data set                  
the goal is to estimate a function

that minimizes the error between prediction and true target

on certain unlabelled test data.

    

Regression



  

Regression Algorithms



  

Regression Wishlist

✘ We have all these nice regression algorithms, why do we need 
more?

✘ Who cares if you invent a new algorithm that performs equally 
well as the mentioned ones?

✘ Instead identify the limits of these algorithms and overcome 
them.



  

Regression Wishlist

People are looking for accurate and reliable solutions

Accurate: low average Mean Squared Error

➢ Limited by Bias-Variance Tradeoff
➢ Limited by Available Labelled Training Data

Reliable: knowing when the model is incorrect

➢ Requires Uncertainty Measure



  

Twin Neural Network Regression



  

Solution to Limitations: Solve different Problem

Inputs are Pairs of Data Points

Based on Artificial Neural Networks

➢ Highest Performance Ceiling (Universal Approximation Theorem)
➢ Modular Architectures Allow for Adaption to Specific Problem
➢ Scales well with Number of Input Features (Important for Pairs)
➢ High Variance + Low Bias

Loop Structure in Predictions

Twin Neural Network Regression



  

➢ Solution of the Original Regression Problem:

Twin Neural Network Regression



  

➢ Solution of the Original Regression Problem:

Twin Neural Network Regression

Unknown data point Known training 
data point

Solution to 
original problem



  

➢ Solution of the Original Regression Problem:

twice the input data size

twice the label noise

square the training data size

but then training scales quadratically 

Twin Neural Network Regression



  

Twin Neural Network Regression
versus the Bias-Variance Tradeoff



  

Bias-Variance Tradeoff



  

In mathematical form provides an expectation for the Mean 
Square Error.

Bias-Variance Tradeoff



  

In mathematical form provides an expectation for the Mean 
Square Error.

Bias-Variance Tradeoff

Bias Error
Model too restricted
Too few free parameters

Variance Error
Model too general
Too many free parameters

Data Error
Noise
Intrinsic to Dataset



  

Bias-Variance Tradeoff



  

Bias-Variance Tradeoff



  

Bias-Variance Tradeoff



  

Bias-Variance Tradeoff

Why does ensembling help?
How does TNNR do ensembling?



  

Effects of Ensembling on Bias-Variance Tradeoff:

Let us assume the final prediction is generated by an ensemble 
of two different solutions from similar models

This let’s us rewrite the Bias-Variance Tradeoff 

Bias-Variance Tradeoff



  

Bias-Variance Tradeoff



  

If the ensemble members are uncorrelated the covariance 
vanishes. 

➢ Typically, ensemble members are correlated.
➢ Pseudo ensembles can be generated by perturbing weights 

of a neural network
➢ Real ensembles can be generated by retraining using 

different initializations or different parts of the training data

Bias-Variance Tradeoff



  

 

TNN implicit ensemble

➢ Get huge ensemble of twice the training data set size

➢ Ensemble is relatively uncorrelated, since the predicted 
differences are different by construction

Bias-Variance Tradeoff



  

Bias Variance Tradeoff



  

Bias Variance Tradeoff

Remember 
these



  

Twin Neural Network Regression
provides uncertainty signal



  

Reliability: Knowing when the predictions can be trusted.

Even an inaccurate model can be reliably wrong! 

Even an accurate model can make mistakes when it is applied 
to data points that are too different from the training data.

➢ Adverserial attacks
➢ Interpolation
➢ Extrapolation

Uncertainty Signal



  

Do ensemble members agree?

➢ Uncorrelated predictions make 
different mistakes

➢ Measure ensemble standard 
deviation

(additional uncertainty signal based 
on loop consistencies)

Uncertainty Signal

Agreement?



  

Example 1d Function 

➢ Uncertainty increases in 
interpolation regime

Generic Data Sets

➢ High StD suggests higher 
prediction error

➢ In domain test data has lower StD 
and Error

➢ Out of domain test data has higher 
StD and Error

Uncertainty Signal



  

Twin Neural Network Regression
can be trained on unlabelled data



  

➢ Transductive: The goal of transductive learning is to infer the 
correct labels for given unlabelled data which is present during 
the training phase

➢ Inductive: The goal of inductive learning is to infer the correct 
mapping from that allows labelling of unlabelled data not 
present during training

(Semi Supervised Regression is neglected vs Classification)

Semi-Supervised Learning

Supervised Learning
Learning from Labelled Data

Unsupervised Learning
Learning from Unlabelled Data

Semi-Supervised Learning
Learning from Labelled and 
Unlabelled Data



  

➢ Train to enforce loop consistency during training

➢ Loops can be used as training data even if the data points 
within them are unlabelled

➢ It can be viewed as two predictions provide a suggested label 
for the third.

Semi-Supervised Learning



  

 

MSE loss for training on labelled training loops

Loop loss for training on unlabelled/partially labelled loops

Combine loss function with loop weight hyperparameter 

Semi-Supervised Learning
Loss Function



  

Semi-Supervised Learning
Training Architecture



  

 

Compare Loop types on Boston Housing Data (transductive)

➢ All Loops together seem best

Semi-Supervised Learning
Loop Types



  

Semi-Supervised Learning 
Results



  

Semi-Supervised Learning 
Results

Remember 
these?



  

 

Semi Supervised Learning 
(30% labelled, transductive)



  

Summary

Twin Neural Network Regression is an Accurate and 
Reliable State of the Art Regression Algorithm

✗ Circumvents Bias Variance Tradeoff

✗ Provides Uncertainty Signal

✗ Can be Trained on Unlabelled Data for Transductive and
Inductive Semi-Supervised Learning

✗ Only One Single Neural Network + One Hyperparameter
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