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Common Beliefs

1. Neural Networks are a black box algorithm




2. Prediction performance is limited by Bias Variance tradeoff




3. Don’t train your supervised model on unlabelled test data

Fewer Labels




3. Dont train your supervised model on unlabelled test data

Fewer Labels
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Interpreting Artificial Neural Networks
in the Context of Theoretical Physics
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Success of Artifical Neural Networks

Image Classification . [,
(Convolutional Network) E l,_:,:_[tg; D:%%

Encoder Latent Decoder

Generative Modelling /
Anomaly Detection
(Autoencoders)

Similarity Detection
(Siamese Network)

Same

Vs
Different




(Supervised) Machine Learning with Neural Nets

,»Machine learning is the subfield of computer science
that gives computers the ability to learn without
being explicitly programmed. * - Wikipedia

Training Data

Test Data

Artificial
Neural
Network

» Dog




(Supervised) Machine Learning with Neural Nets

,»Machine learning is the subfield of computer science
that gives computers the ability to learn without
being explicitly programmed. * - Wikipedia

1) What does the Neural Network actually
Training Data learn?

2) Can this Knowledge help in Scientific
Discovery?

Test Data
Cats ?

Artificial
Neural
Network

» Dog




Overview

x Artificial Neural Networks
X Interpretation of Convolutional Neural Networks
X Interpretation of Autoencoders

X Interpretation of Siamese Networks



Artificial Neural Networks

Feed forward neural network
e 2

Perceptron
X1 _W;
B g ;(Wz : |
4 X3 TWs
Output y=f(Z 0 +0)
- \ J

Input: Data X —= (fl, oo fn) , Label Y = (y17 veey yn)

L 1L
Output: Ypmd — F(X, Wy 5, bi )

Goal: choose w and b,L-L such that Yyreq = Y

¥
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Interpretation Techniques
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Bottleneck Interpretation }
+Correlation Probing Neural Network

Bottleneck

)

Sample Localization Averaging Prediction
Configuration Network Layer Network

} — %@
Wetzel, PRE 2017

% Wetzel, Scherzer, PRB 2017

Wetzel, et al, PRR 2020




X No, works but only for the most simple problems.



Influence Functions

Phase Detection with Neural Networks: Interpreting the Black Box

Anna Dawid."? Patrick Huembeli,” Michatl Tomza.! Maciej Lewenstein.” ? and Alexandre []eu:péu’u'"
¥ Remove specific datapoints or features

and measure the effect on the performance

x Largest change in performance indicates the
most influential data point or feature

Dawid et al, New Journal of Pyhsics 2020




Dark Matter

Discovering Symbolic Models from Deep Learning
with Inductive Biases

Miles Cranmer* Alvaro Sanchez-Gonzalez” Peter Battaglia® Rui Xu!

Kyle Cranmer?® David Spergel’! Shirley Ho'315
A perg

¥ Simulate Dark Matter

X Apply symbolic regression at the output of a graph
neural network to recover force equation

Cranmer et al., Neurips 2020




Condensed Matter+Correlator Network

Correlator Convolutional Neural Networks: An Interpretable Architecture for
Image-like Quantum Matter Data

Cole Miles,! Annabelle Bohrdt,? 24 Ruihan Wu,? Christie Chiu,%%7 Muging Xu,? Geoffrey

Ji,2 Markus Greiner,? Kilian Q. Weinberger,® Eugene Demler,? and Eun-Ah Kim®

x Explicit feature engineering layer that probes for correlations

¥ Dominant features correspond to dominant correlations in
condensed matter system

Miles et al., Arxiv 2020




Physical Concepts

Discovering physical concepts with neural networks

Raban Iten,* Tonv Metger.®* Henrik Wilming, Lidia del Rio, and Renato Renner
ETH Zirwch, Wollgang-Pauli-Str. 27, 8093 Zirich, Sutlzerland.
(Dated: January 24, 2020)

X Interpretation of autoencoder latent representation

x Ask physical questions to be extractable from latent space

Iten et al., PRL 2020
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Bottleneck Interpretation
+Correlation Probing Neural Network
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Bottleneck Interpretation

Interpretation is often difficult since information is spread
over several neurons and layers

If the neuron contains the The output of the neuron can
information of one single -~ » be mapped via a bijective
quantity/obervable Q) (.5) function to the observable

F(S) = f(Q(S5))

Idea: identify or enforce Bottleneck

bottlenecks in the network

Perform regression on the
output of the bottleneck
neuron



Supervised Learning
2d Ising Model

» Data: Monte Carlo samples > Testing in interval containing

> Training at well known points phase transition

in phase diagram - Estimate within 1% of exact
value , _ 2

In(14 /2)

> Labels: Phase

Average Classification

1.0
]
(c) ' ' .......
1 S
o 0.8 : |
> : 3
= ]
5 ]
3
S 0.6
My L
c g &=
o h =
w© 0.4} B
O b
| = i
%] q]
I w [l
; ‘ ; O S 1x1 Net
train ‘l"lerer test here 3 train here O 0.2} kL X1l Net |4
= -3 R i | —
L Te e e T — = 1x2 Net
| n == ExactT,
! 0.0 ‘ - ‘ ‘
| 0 1 2 3 4 5

|
Ferromagnet | Paramagnet Temperature T
|

Carrasquila, Melko, Nature 2017




Artificial Neural Networks

Feed forward neural network Natural Bottleneck

f b / Perceptron

gression s

Q

Y A X1 _ W

U)/ / 2 y

S v

*??; Output y=Ff(Z w+b)

LL \_ J

=

CEU Input: Data X = (xl, Cees alﬁjn) . , Label Y = (y1, veey yn)
I§ Output: Ypred — F(X7 Wi 5y bz )

Goal: choose w and bz-L such that Ypreq = Y

¥



Interpretation of Neural Network }
2d Ising Model

Localization Averaging Prediction

o @ e Q],\<_thw°f§gi% Ly Network
o @ @

Interpretation Net
Wetzel, Scherzer, PRB 2017

> Interpretation Net interpolates between a general NN and a
minimal optimal NN which has the same performance

» Interpretation by reducing the NN capacity in an ordered
manner until one observes a performance drop

-~ Inspired by extensive physical quantities (averaging layer
probes for translational invariance of the quantity Q(S) )



Interpretation of Neural Network
2d Ising Model

Decision functions
F(S) = sigmoid(w Q(S) + b)

QS =[N s

>Q(S)=N1 > sisg

<1,7>nn

Deduction visually confirmed:

Note:

1x2 Network also has
the Magnetization minimum
which is easier to find!

Receptive Field Size Train Loss Validation Loss

28 x 28 6.1588e — 04 0.0232
1x2 1.2559e-04 1.2105e-07
1x1 0.2015 0.1886
baseline 0.6931 0.6931
Magnetization

Expected Energy per site

;I.xl Net ‘ 1x2Net ‘

L (b)
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©
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1.0}

~
T

0.8

(o)}
T

0.6

wv
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=
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SU(2) Lattice Gauge Theory

Space time lattice

Gluons on the connections

Quarks on heavy static lattice ~ Petween lattice sites are
sites. described by Matrices

Uo=583]

U, € SU(2)



Supervised Learning
SU(2) Lattice Gauge Theory

Data: Monte Carlo samples

SWilson Blatt Z Z Re tr 1 — UZ,:I/)

xr pu<v
> Training at well known points
In phase diagram
> Labe's: Phase 1.0 Average Classification
© i F
Find phase transition close to e
lattice calculation 8 02l 11 et
j o I(_Ziltltcchjleation

10 15 20 25 30 35
Lattice Coupling 3



Interpretation of Neural Network
SU(2) Gauge Theory

Deduction confirmed by perfect

correlation between NN so XBxBxBNet . 2xlxix Net
output and Polyakov s
Loop order parameter o 2 " 1o
e T R
. . 2 0.7
F(S) =~ sigmoid [ w ~ Zf({Uu N +b
T
_ 0 1 071 0.1 041 __ Orrl
f({UZjO}) = A 0, — bTbT — C . C — deT = tr (UT UT)

> Polyakov Loop



(Variational) Autoencoder

2d Ising Model

>

Latent
\_Variables X\

Decoder
A\,

N\ Natural Bottleneck

Obijective: Minimize Reconstruction error

1
MSE = — Z;; |2 — F(xk)

Data: Monte Carlo samples

I

> Train everywhere in phase diagram

>

Labels: None

.
E - XY= lET

A - N
b gll_é_i!illl.

Tc T
|
|
|

|
Ferromagnet | Paramagnet




(Variational) Autoencoder

2d Ising Model
O 10009 | | | | | | > — Imagnetilzation
1:5 0.8 _ latent
10l | 8000¢ 0.7} f:cri;li:ﬁztion 1
E - loss
% o:o- o000 g 0:5-
_2:5)1_5 —iO —DIIS OICI OIS lllD 1.5 —02 Oﬂﬂ?ngTFn[)HSAOG OHSHTEH_"ES 2.0 O:G(; l 2 3 4 5
- . ma;gne;cizati-c:-n . . . - Ia-ten*.c pérarﬁetér - . temperature
Ferromagnetic Ising model on the square lattice Wetzel, PRE 2017
» Latent parameter corresponds to magnetization
-~ |dentification of phases: Latent representations are clustered
>

Location of phases: Magnetization, latent parameter and
reconstruction loss show a steep change at the phase

transition.



Siamese Neural Networks }

Latent Representation

o

Input]{:ggggéggggji\
Compare

Network

Loss

Input 2

Label N

Natural Bottl K
~ Input : Pair of data points aturat bottienec

- Label : same / different
> Network pair contains identical neural networks with shared

weights
Wetzel, et al, PRR 2020




Machine Learning
Multi Class Classification

,»Machine learning is the subfield of computer science
that gives computers the ability to learn without
being explicitly programmed. * - Wikipedia

Test Data

Training Data

Machine
Learning

. > Roger
: Estelle / Algorithm g

Roger



Machine Learning
Infinite Class Classification

Reformulation of the Problem:

~ Teach a maching learning algorithm if two pictures show the
same class.

Test Data
?
different
Machine
Learning
Algorithm
/ Reference Test
Picture Picture
same
(Does not need to
be in training set)




Siamese Neural Networks
Particle in Gravitational Potential

Problem:

- Given two observations of positions and velocities, do they
belong to the same particle trajectory?

... different
@

SNN Solution:

- Prepare Dataset of positive data where the pair is connected
by solving the equations of motion

(( LylY, Vp,y Uy ):, (;’I:!,, 'y!; "U:;.g "U-; ))

> Prepare Negative Dataset by permuting positive dataset
> Train SNN to distinguish between positive and negative pairs



Siamese Neural Networks
Particle in Gravitational Potential

Results:
TaY o «  Train
Training accuracy : 98% 0 . Tost
0.5
Test accuracy : 97% S 00
-0.5

-1.5

~Interpretation by polynomial regression w0 0 w0 ko

intermediate output

on latent representation:

f(x)~—-403.T1xv, — 4.85x — 0.58zy gl
- 01720, - 0.021)5 =10.018,, -2
+0.00v; +0.01v, + 0.02v, N :Z s
+0.4522 + 0.66y> + 0.74 N . f: T
+0.99yv, + 1.24y + 402.44yv,, 0 e
N — 403 (.’L"Uy _ UKULL) intermediate output
i,

> Network has learned the angular momentum to infer its
prediction.



Siamese Neural Networks
Lorentz Transformation of Electromagnetic Fields

Problem:

- Given two field configurations, can they be transformed into
each other by a Lorentz transformation?

same

SNN Solution: é ;

- Prepare Dataset of positive data where the E)air IS connected
by a Lorentz Transformation

((E.. By, E.,B., By, B.). (EL. El\ EL. Bl B, B.))

> Prepare Negative Dataset by permuting poitive dataset
> Train SNN to distinguish between positive and negative pairs



Siamese Neural Networks
Lorentz Transformation of Electromagnetic Fields

Results:
. 2—x x rain
Training accuracy : 95% : e
1
Test accuracy : 94% @

> Interpretation by polynomial regression =~ o <o o w0 0 a0

intermediate output

on latent representation:

f(x) 17053628, — 170.22F, By - 170.20E3B3 :
~4.13B3 + ... + 4.92E7 + 53.43 R en
%~ — 170 (BB + B2 By + E3B3) +53

-~
=E-B -200 -100 0 100 200 300

intermediate output

~ Network has learned the determinant of the field strength
tensor to infer its prediction.



Summary

X Interpretation of Artificial Neural Networks is hard because
information is distributed among many layers and neurons

X Interpretation is possible by identifying bottlenecks and
performing regression

X Interpretation is constructive and can give insight into the
underlying physics:

Neural Networks applied to phase recognition learn order
parameters or energies

Siamese Networks for similarity detection learn invariants
or conserved quantities
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Overview

Introduction:
X Regression

X Limits of Traditional Algorithms

Twin Neural Network Regression:
x Circumventing Bias Variance Tradeoff
x Uncertainty Signal

X Semi Supervised Training
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Regression }

Regression assumes there exists a true function with noise that
models the relation between features and targets.

y=flz) +e

Using the information contained in a training data set [)
the goal is to estimate a function

)

f (z; D)
that minimizes the error between prediction and true target
r 2
(y — £ (z; D))

on certain unlabelled test data.



Regression Algorithms

Regression Algorithmes List

1. Linear Regression

2. Polynomial Regression

3. Poisson Regression

4. Ordinary Least Squares (OLS) Regression

@Python.Learning

5. Ordinal Regression

6. Support Vector Regression

7. Gradient Descent Regression

8. Stepwise Regression

9. Lasso Regression

10. Ridge Regression

11. Elastic Net Regression

12. Bayesian Linear Regression

13. Least-Angled Regression (LARS)

14. Neural Network Regression

15. Locally Estimated Scatterplot Smoothing (LOESS)
16. Multivariate Adaptive Regression Splines (MARS)
17. Locally Weighted Regression (LWL)

18. Quantile Regression

19. Principal Component Regression (PCR)

20. Partial Least Squares Regression



[ Regression Wishlist

X \We have all these nice regression algorithms, why do we need
more”?

X Who cares if you invent a new algorithm that performs equally
well as the mentioned ones?

X Instead identify the limits of these algorithms and overcome
them.



Regression Wishlist }

People are looking for accurate and reliable solutions

Accurate: low average Mean Squared Error

~ Limited by Bias-Variance Tradeoff
> Limited by Available Labelled Training Data

Reliable: knowing when the model is incorrect

> Requires Uncertainty Measure
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Twin Neural Network Regression }

Solution to Limitations: Solve different Problem

Inputs are Pairs of Data Points
Based on Artificial Neural Networks

» Highest Performance Ceiling (Universal Approximation Theorem)
> Modular Architectures Allow for Adaption to Specific Problem

- Scales well with Number of Input Features (Important for Pairs)

> High Variance + Low Bias

Loop Structure in Predictions



f(x,)
F(Xl 3X2)

Y2-¥1=F(X,,X) f(x,) F(x,,X3)

f(x3)

» Solution of the Original Regression Problem:

Yo = F(332;371) = U



f(x,)
F(Xl 3X2)

¥2-¥1=F(X,,X1) f(x,) F(x,,X3)

f(x3)

» Solution of the Original Regression Problem:

original problem Known training

Unknown data point data point



Twin Neural Network Regression

~ Solution of the Original Regression Problem:

Yo = F(x9,21) + 11

LN
[ I ]

twice the input data size (=
twice the label noise ==
square the training data size ®¢

but then training scales quadratically | ><
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Twin Neural Network Regression
versus the Bias-Variance Tradeoff

TRE



Underfitting Just right

« High training error » Training error slightly
e Training error close to test lower than test error
error

» High bias

Overfitting

« Very low training error

e Training error much lower
than test error

» High variance




In mathematical form provides an expectation for the Mean
Square Error.

MSE = E, {BiasD[f(:c; D)]? + Varp [f(:x:.}, D)] } + o2



In mathematical form provides an expectation for the Mean

Square Error.
Biasp[f(z; D) Varp [f(zr:, D) } @
Bias Error

Model too restricted #

Too few free parameters Data Error
Noise

Intrinsic to Dataset

MSE = E,

Variance Error
Model too general
Too many free parameters



Variance

Neural Networks

@rt Vector Regression

Linear Regressior

Bias



Variance

A

Neural Networks

Regularized

leural Networks

Linear Regression

Decision Trees

Bias



Variance

A

Neural Networks
@'ort Vector Regre@

y Decision Trees

Ensembling

Twin Neural Network ™
Regression 1

Bias



Bias-Variance Tradeoff }

Variance

A

Ensembling

<<

Why does ensembling help?

How does TNNR do ensembling?

Support Vector Reg@

Twin Neural Network
Regression

Bias



Bias-Variance Tradeoff }

Effects of Ensembling on Bias-Variance Tradeoff:

MSE = E, { Biasp|f (z: D)J? + Varp [f(x: D) } to?

Let us assume the final prediction is generated by an ensemble
of two different solutions from similar models

f(z:D) = 1/2fa(z; D) + 1/2fp(z; D)

This let’s us rewrite the Bias-Variance Tradeoff



MSE = E, {Biaq[ljzfA +1/2fB]? + Var [1/2fa + 1/2}‘5]} tg?

E. { Bias[f]? + Var [1/2f4] + Var [1/2f5] + 2 Cov [1/2fa, 1/2}};]} + o2

E. {Bisa..c;[f]2 +1/2Var [f] +1/2Cov [fa, fs] } g



Bias-Variance Tradeoff

MSE = E, { Bias[1/2fa +1/2fp]% + Var [1/2fa +1/25] } + o2

Ey { iiiﬂh‘fﬁ? + 1/2 Var [,f] + 1/2 Cov [ji,h f,r;] } + o2

If the ensemble members are uncorrelated the covariance
vanishes.

> Typically, ensemble members are correlated.

> Pseudo ensembles can be generated by perturbing weights
of a neural network

> Real ensembles can be generated by retraining using
different initializations or different parts of the training data



Bias-Variance Tradeoff

TNN implicit ensemble

TrL Tri

| 1 . . 1 W _

L pred _ ~trainy ; . train __ [ g train LEratn Y o LTLTL

Yy = — E F(z;; 2" ) 19, = — E —F(x;, ") — —F(z7*" . x;) + y.

’ m i~ b J 2 J 2 (5" ) + 9
j=

» Get huge ensemble of twice the training data set size

> Ensemble is relatively uncorrelated, since the predicted
differences are different by construction



Bias Variance Tradeoff

Common Data

BH S EE YH WN BC
RF 4.2440.29 8.23+0.24  2.2240.08 2.95+0.46 0.64+0.02 0.71+0.03
XGB 2.934+0.18 4.37+0.19 1.174+0.04 0.42+0.06 0.61+0.01 0.70+0.03
ANN 3.09+0.14 5.374+0.17 0.98+£0.03 0.52+£0.07 0.64+£0.01 0.76+0.02
ANNE 3.4340.32 5.1440.21 0.89+0.04 0.43+0.05 0.62+0.01 0.72+0.03
MCD  2.9540.15 6.07+0.21 2.96+0.12 1.4240.18 0.68+£0.01 0.72+0.03
TNN 2.554+0.10 4.1940.25 0.5240.02 0.49+0.07 0.62+0.01 0.83+0.03
TNNE 2.61+0.20 3.88+0.22 0.46+0.02 0.37+0.06 0.63+0.01 0.724+0.02

Science Data Image Data

RP REL WSB ISING
RF 0.604+0.013 0.288+0.004  0.1414+0.011 RF 0.601+0.003
XGB 0.229+0.005 0.12440.002 0.071+0.006 XGB 0.144+0.003
ANN 0.050+0.002 0.019+0.000  0.0474+0.004 CNN 0.050+0.001
ANNE 0.032+0.002 0.016+0.001 0.0314+0.002 CNNE  0.044+£0.001
MCD  0.086+0.002 0.033+£0.001 0.04240.003 CMCD  0.052+0.001
TNN 0.02240.001 0.017+0.000 0.020+0.001 CTNN 0.035+0.001
TNNE 0.016+0.001 0.014+0.001 0.0224+0.002 CTNNE 0.030+0.001

Table 1. Best estimates for root mean square errors (RMSEs) of different algoritms on the test sets belonging to different data sets. The
Lowest RMSE:s are in bold for clarity. Our confidence on the RMSEs is determined by their standard error. Data sets: Boston housing
(BH), concrete strength (CS), energy efficiency (EE), yacht hydrodynamics (YH), red wine quality (WN), Bio Conservation (BC), random
polynomial (RP), RCL circuit (RCL), Wheatstone bridge (WSB) and the Ising Model (ISING). Algorithms: Random Forests (RF),
xgboost (XGB), Neural Networks (ANN), Monte-Carlo Dropout networks (MCD), Twin Neural Networks (TNN) and ensembles (E) or
convolutional variants (C).



Bias Variance Tradeoff

Common Data

BH CS EE YH
RF 4244029 823+0.24 2.2240.08 2.95+0.46
XGB  2.93+0.18  4.37+0.19 1.1740.04 0.42+0.06
ANN  3.0940.14  5.3740.17  0.9840.03  0.5240.07
ANNE 3.4340.32 5.1440.21  0.894+0.04 0.43+0.05
MCD  2.9540.15  6.07+0.21  2.964+0.12  1.4240.18
TNN  [2.55+0.10 | 4.19+0.25  0.5240.02  0.49+0.07
TNNE 2.61+0.20 |3.88+0.22||0.46+0.02 || 0.37+0.06 |

Science Data

RP RCL WSB
RF 0.60440.013  0.288+0.004  0.141+0.011
XGB  0.22940.005  0.124+0.002  0.071+0.006
ANN  0.05040.002  0.019+0.000  0.047+0.004
ANNE  0.03240.002  0.016+0.001  0.031+0.002
MCD  0.08640.002  0.033+0.001 _0.042+0.003
TNN  0.0224£0.001  0.0170.000 | 0.020-0.001 |

TNNE |0.016+0.001| [0.014:0.001| 0.02240.002

WN BC
0.644+0.02 0.714+0.03
0.61+0.01|| 0.70+0.03
0.64+0.01  0.76+0.02
0.624+0.01 0.72+0.03
0.68+£0.01 0.72+0.03
0.62+0.01 0.83+0.03
0.63+0.01 0.72+0.02
Image Data
ISING
RF 0.6014+0.003
XGB 0.144+0.003
CNN 0.0504+0.001
CNNE  0.04440.001
CMCD  0.05240.001
CTNN 0.035+0.001

CTNNE | 0.03040.001 |

Remember
these

Table 1. Best estimates for root mean square errors (RMSEs) of different algoritms on the test sets belonging to different data sets. The
Lowest RMSE:s are in bold for clarity. Our confidence on the RMSEs is determined by their standard error. Data sets: Boston housing
(BH), concrete strength (CS), energy efficiency (EE), yacht hydrodynamics (YH), red wine quality (WN), Bio Conservation (BC), random
polynomial (RP), RCL circuit (RCL), Wheatstone bridge (WSB) and the Ising Model (ISING). Algorithms: Random Forests (RF),
xgboost (XGB), Neural Networks (ANN), Monte-Carlo Dropout networks (MCD), Twin Neural Networks (TNN) and ensembles (E) or

convolutional variants (C).
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Twin Neural Network Regression
provides uncertainty signal

TRE



Uncertainty Signal

Reliability: Knowing when the predictions can be trusted.

Even an inaccurate model can be reliably wrong!

Even an accurate model can make mistakes when it is applied
to data points that are too different from the training data.

- Adverserial attacks
~ Interpolation
» Extrapolation



Uncertainty Signal

Do ensemble members agree?

. pred — . - _..",_-: atny 4 Jdraimn _ —F(r: P_J'..ru.'.n. o :.flff}.f-ﬂ-.:... L qlTatn
Yyl = ZF{I“.!} )+ y; =l EFU“ g ) ZF{I.J , Ti) + Y;
71=1 =1
Y2
- Uncorrelated predictions make @ labelled Y,
different mistakes @ unlabelled ?
Y1
> Measure ensemble standard
deviation

Agreement?

(additional uncertainty signal based
on loop consistencies)



Uncertainty Signal

Example 1d Function o
> Uncertainty increases in
interpolation regime oS D S L1 e
Generic Data Sets EE—
> High StD suggests higher 5 et .

prediction error
> In domain test data has lower StD s L ] B
and Error §ll ="
- Out of domain test data has higher -
StD and Error 3
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Twin Neural Network Regression
can be trained on unlabelled data

TRE



[ Semi-Supervised Learning

N\ /

Semi-Supervised Learning

Learning from Labelled and
Unlabelled Data

- Transductive: The goal of transductive learning is to infer the
correct labels for given unlabelled data which is present during
the training phase

> Inductive: The goal of inductive learning is to infer the correct
mapping from that allows labelling of unlabelled data not
present during training

(Semi Supervised Regression is neglected vs Classification)



[ Semi-Supervised Learning }

~ Train to enforce loop consistency during training

- Loops can be used as training data even if the data points
within them are unlabelled

0= F(zi,z;) + Flzi,2c) + Flzk, x5)

> |t can be viewed as two predictions provide a suggested label
for the third.



Semi-Supervised Learning
Loss Function

MSE loss for training on labelled training loops

l [
lossysg = — (F(zi,z5) — (vi - 'yj”i
3 & &

Loop loss for training on unﬂi!abelled/partially labelled loops

r

1 . . s
L08S100p = (m + n)3 Z (F(x;, i'*‘;a'j' + Plzy i)+ Flrp,w:)))
|'l|llt-'

Combine loss function with loop weight hyperparameter

loss = lossprse + A l08S1p0p



Semi-Supervised Learning

Training Architecture

(¥1,¥2:¥3)

(X1,X2,X3)

(YI’ ‘7 s ‘?)

MSE objective

A

F(Xl >X2)9F(X29X3)7F(X37X1)

\/

loop objective




Semi-Supervised Learning
Loop Types

: Y3 - _ !
supervised unsupervised
@ labelled @ unlabelled

~ —— All Loops
35 ‘ /
~—— / Loops B
3 k e — Loops C
3.0 P
% 25 —— Train RMSE % 3.4
2 —— Val RMSE <
X 20 —— TestRMSE o
32
1.5
3.0
1.0
10° 10" 10" 10 10 107 10" 10 10" 10°
Loop weight A Loop weight A

Compare Loop types on Boston Housing Data (transductive)

> All Loops together seem best



Semi-Supervised Learning
Results

Table 2: Best estimates for test RMSEs belonging to different data sets. Our confidence on the RMSEs
is determined by their standard error. Data sets: bio conservation (BC), boston housing (BH), concrete
strength (CS), energy efficiency (EE), RCL circuit (RCL), red wine quality (WN), test function (TF),
red wine quality (WN), Wheatstone bridge (WSB) and yacht hydrodynamics (YH). We train on 90%
of the available data where 30% is labelled training data, 10% is unlabelled validation data and 50%
is unlabelled test data whose labels are predicted using TNNR as a transductive semi-supervised
learning method. The labels of the 10% of the data which was not used during training are inferred

using TNNR as an inductive semi-supervised learning method.

30% labelled training data

Supervised Transductive Gain  Supervised Inductive Gain
BC 0.9382+0.0137 0.7960+0.0056 15.2% 0.8996+0.0280 0.7721+£0.0175 14.2%
BH 4.1357+0.1229 3.8228+0.0951 7.6% 3.6830+0.2337 3.5521+0.2281 3.6%
CS 6.0777£0.0773 5.9088+0.0616  2.8% 6.0467£0.1412 6.0905+£0.1260 —1.0%
EE 1.5084+0.0317 1.4194+0.0409 5.9% 1.4794+0.0416 1.3902+0.0459 6.0%
RCL  0.0200£0.0003 0.019440.0003  3.0% 0.0203£0.0004 0.0195+0.0004 3.9%
TF 0.0066+0.0004 0.0063+0.0004  4.5% 0.0064+£0.0004  0.0059£0.0004 7.8%
WN  0.78414+0.0047 0.6511+0.0027 17.0% 0.7868+0.0087 0.6534+0.0075 17.0%
WSB  0.0341£0.0012 0.0341£0.0012  0.0% 0.0368+0.0018 0.0368+£0.0018 0.0%
H 1.22034+0.0616  1.2203+0.0616  0.0% 1.1170+0.0910 1.1170+£0.0910 0.0%



Semi-Supervised Learning
Results

Table 2: Best estimates for test RMSEs belonging to different data sets. Our confidence on the RMSEs
is determined by their standard error. Data sets: bio conservation (BC), boston housing (BH), concrete
strength (CS), energy efficiency (EE), RCL circuit (RCL), red wine quality (WN), test function (TF),
red wine quality (WN), Wheatstone bridge (WSB) and yacht hydrodynamics (YH). We train on 90%
of the available data where 30% is labelled training data, 10% is unlabelled validation data and 50%
is unlabelled test data whose labels are predicted using TNNR as a transductive semi-supervised
learning method. The labels of the 10% of the data which was not used during training are inferred

using TNNR as an inductive semi-supervised learning method.

30% labelled training data

Supervised Transductive Gain  Supervised Inductive Gain
BC  0.9382+40.0137 0.7960+0.0056 0.8996+0.0280 0.772140.0175
BH  4.1357+0.1229 3.8228+0.0951 7.6% 3.683040.2337 3.55214+0.2281  3.6%
CS  6.0777£0.0773 5.9088+0.0616 2.8% 6.046740.1412 6.090540.1260 —1.0%
EE  1.5084+0.0317 1.4194+0.0409 59% 1.479440.0416 1.390240.0459  6.0%
RCL  0.0200£0.0003 0.0194+0.0003  3.0% 0.02034+0.0004 0.019540.0004  3.9%
TF  0.006640.0004 0.00634+0.0004 4.5% 0.0064+0.0004 0.0059+0.0004  7.8%
WN  0.784140.0047  0.651140.0027 0.7868+0.0087  0.653440.0075
WSB  0.0341£0.0012 0.0341£0.0012  0.0% 0.036840.0018 0.036840.0018  0.0%
YH  1.220340.0616 1.22034+0.0616  0.0% 1.1170+0.0910 1.1170£0.0910  0.0%

Remember
these?



Semi Supervised Learning
(30% labelled, transductive)

Concrete Strength

6.4

Bio Conservation Boston Housing
0.950

0.925
0.900
0.875
0.850
0.825
0.800

Test RMSE

B = ‘ 5.8 = ‘
10° 107 10" _10° 10" 10° 107 10'_ 10" 10 107
165 Energy EfflClenc 0.0220 RCL Ciruit 0.0100 Test Function
— 0.0095-
1.60 ‘ 0.0090
0.0210 0.0085-
135 0.0080
0.0205 0.0075
1.50 '
0.0200 0.0070
145 0.0195 0.0065
0.0060-
1.40 = 0.0190 -_ = ‘ 0.0055 = ‘
! 107 10" 10" 10 107 107 10" 10° 10 107
Red Wlne Quallty Wheatstone Bridge Yacht Hydrodynamics

0.78
0.76
0.74
0.72
0.70
0.68
0.66
102 10" 10° 10" 10

B} L ‘ 110 L ‘
o 10" 10° 10" 10 107 10" 10 10" 10°

Loop weight A



Summary

Twin Neural Network Regression is an Accurate and
Reliable State of the Art Regression Algorithm

x Circumvents Bias Variance Tradeoff
X Provides Uncertainty Signal

X Can be Trained on Unlabelled Data for Transductive and
Inductive Semi-Supervised Learning

x Only One Single Neural Network + One Hyperparameter
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