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We will discuss the following:
Part I:

o Hilbert Spaces
o Reproducing Kernel Hilbert Spaces (RKHS)
o Solving regularization problems with RKHS
kernel SVM
kernel ridge regression
(Gaussian process regression

Part II:

o Bayesian optimization for inverse quantum problems
o Model selection metrics
Validation error, C'p, AIK, BIC
o How to design the best kernel?
o Accelerating Bayesian optimization by kernel improvement



Part I1I:

o Gaussian process regression for building accurate PES for
large molecules

o Extrapolation of observables with Gaussian processes

o (Quantum machine learning

o How to build the best quantum kernels



Part |

Submit questions about Part I by the end of the day to
rkrems@chem.ubc.ca
[ will do my best to address these questions tomorrow



Preliminaries...



Regression:

Model

Interpolation

Classification:
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Machine Learning




The reality is (most often) non-linear

... but 1t can be made linear...



The change © — () with ®(z) = 2 sin(x), transforms

into

-
1




Performing regression




[f only we knew ®(x) for every problem ...
Some ML methods (e.g., Neural Networks) aim to determine ®(x)
Others (e.g., kernel methods) bypass this problem ...

... by using the kernel trick <= thanks to Hilbert

Kernel trick:

= Avoids the need to determine ®(x) explicitly
= Writes all models in terms of inner products (®(z), ®(z))4

What do we call a kernel?



What do we call a kernel?
In general, kernels are weights, whether in a sum or an integral.

For example,...

b
9(z) = / K () f(y)dy

Pay attention to these examples... they will be useful for us today



n

g(x) = K(x,z;)y(z;)

1=1

If y(x;) is an observation at x;, then

n
flz) = Z K (x,x;) - {Observation at x;}
1=1

1s a kernel smoother.

Let’s take a look at this in a little more detail...



The simplest imaginable ML
model:

1t
fﬁz

.
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The simplest imaginable ML
model:

1t
fzﬁzyi
1

Let’s take smaller chunks
of data (e.g. 10 points at a
time) and average:

A ;0
flz) = 1—02%
i=1

for 2 sampling points
in bin A, with x € A
and j=1,...,n/10 —1

| |
+ hd = %] F= o [=:]

Moving average:

| |
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We can perform such aver-
aging for every point in x:

—
=
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i) = g for IO.pomts near x .
0 otherwise

We will now replace h;(x) with smooth functions of x.

We will use functions that depend only on the distance from point x;,
ie. hi(z) = ¢(lz — ).

Such functions are called radial basis functions (RBF).

We will use renormalized Gaussian functions for RBF.



If h;(x) are replaced with smooth functions, such as

hi(x) = k(ws, x)/Alz) with Az Zm@,

1 .
k(zi, z) = \/Tﬂe_(x_%)Q/Ql < Gaussian functions
then
n
f@) =) hi@)y,
1=1

becomes smooth:

| |
R L = [} £ =2 =]




The last plot is simply the sum over y; with weights given by the
corresponding Radial Basis Functions.

The renormalized RBFs look like this:

| OO

To evaluate the model at ™, we sum over y;, multiplied by the value
of the corresponding RBF'.
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Remember this simple equation... we’'ll come back to it later..



Another example — integral transforms:

b
g(z) = / K (x, ) f (y)dy

where K (x,y) is the nucleus — or kernel — of the integral transform.

In path-integral formulation of quantum mechanics:

(1) = /_ " Koo e, ¢)de!

where the kernel is given by the Green’s function of the Schrodinger
equation.

...back to Hilbert...



Hilbert showed that the integrals over two real-valued, square-integrable
functions

b
inner product — (f,q) = / f(x)g(z)dx

have the same properties as a scalar product of two vectors in a Eu-
clidean space.

For orthogonal functions, this means:

(f,9) =0



Why is this important?

The scalar product in a Euclidean space can be used to define the
angle between two vectors:

a-b
a||b]

cos ) =

So the scalar product determines the relationship between a and b.

Hilbert’s inner products can be used to define the relationship between

f(z) and g(z)

This can be used to define a Hilbert space.



What is a space?

A space is a set of elements with some rule(s) that provides the rela-
tionship between the elements

Hilbert’s inner products provide the rule for a set of functions giving
rise to a Hilbert space



Consider an integral transform:

b
fz) = / K (z,y)f (y)dy

with the kernel K (x,y) that is symmetric in x and y.

Hilbert’s discovery implies that the kernel can be written as

K(x,y) = Z M@ () Pn(y)
n=1

where ¢n,(z) are orthogonal functions.

If ¢p(x) are ortho-normal, A, = 1.



To see this, consider f(y) = ¢r(y):

b b
[ K@) 1@y =Y Atn(o) [ onw)on(u)dy = Man(a)

For an arbitrary f(y):

b b
/ K@, y)fwdy = 3 Andn(z) / dnly)f (y)dy =
= Z )\nanﬁbn(@ = f(@

The final equality holds provided A\, =1V n.



Thus, we have

n=1

This is a very special function.. why?

Let’s index it by x and view it as a function of y:

K:z:(y) — Z am,n¢n<y)

n

Viewed this way K, is a vector in the Hilbert space with ¢, as axes.

At the same time, we began with:

b
fz) = / K (2, ) f(y)dy = (f, Kz)



Thus, any function in this space can be written as

flz) = (f, Kz)

and K is called the reproducing kernel of this Hilbert space

... because it reproduces any function in this space by the inner prod-
uct above

K (z, 1) is the kernel function that defines a reproducing kernel Hilbert
space

Reproducing kernel Hilbert space = RKHS



Thus, any function can be written as

flx) = ([, Kz)

What if f(z) = Ky(x)?



Thus, any function can be written as

f(z) = (f, Kg)

What if f(z) = Ky(x)?

Ky(r) = (Ky, Kz)

K(x,y) = <Ky>K:U>

Thus, the kernel function is an inner product of K, and /!



A brief summary of the above:

e A Hilbert space is defined by its elements and an inner product.

b
inner product —  {f, g) —/ f(z)g(x)dx — L? Hilbert space
a

e The kernel function K (x,y) defines a unique RKHS and vice versa.
= Moore — Aronszajn theorem

e Because K (x,y) is an inner product, it must be a positive definite
function.

Question:

e Can any positive definite function K : x x x¥ — R be a kernel
function?

Yes, if the inner product is appropriately redefined.



The inner product from above can be written as

b 00
(f.g) = / F(2)g() Z £, 6u) (g, b

Now, consider an arbitrary, positive-definite function K (x,y) with the
cigenvalue equation:

b
/ K(2,9)6n(y)dy = Maon(z)  with Ap = 0

The function K (x,y) can still be written as

n=1

but A, are no longer equal to 1.

I[s Ki(y) := K(x,y) still a reproducing kernel?



The answer is yes, if we redefine the inner product of the Hilbert space
as

% Z f¢n 97¢n>
n=1

In this case,

=D _{f.én)on(x) = f(2)

n

— (f, on) Kx,qu
3

Thus, a choice of a real, positive definite function K (x,y) defines the
RKHS by defining the basis and the inner product of the Hilbert space
through the eigenvalue equation:

b
/ K(x,y)on(y)dy = Angn(x) with Ay >0



How is this all related to machine learning?

Remember our feature map:

x — P(x)

We will define the feature map @ so that

(O(x), D(')) = K(z, x')

is a kernel function for a Hilbert space, in which our data are linear
(or linearly separable).

What does this give us”



Regularization problems



Regularization

y Which model?

How to chose the better one?

X

Figure source: By Nicoguaro — Own work, CC BY 4.0,

https://commons.wikimedia.org/w/index.php?curid=46259145



How do we train a ML model?

In general we want to minimize the distance between the data and

the fit.

An obvious choice 1s to minimize this:

n
Z (yi — f(x;))° where y; are observations

7

But is this a good choice?



Imagine replacing linear functions in the model & * 3 with some other
functions of arbitrary complexity:

x; — p(x;) = [p1(x7), pa(xi), - on(@)]

If no bounds are placed on the complexity of the functions ;, mini-

mization of
n

2
Loss function = Z (yz — p(x;) TIB)

7
will lead to zero loss function.
The model will fit the noise, which is overfitting.

Regularization (aims to) prevents this.



Without regularization With regularization

How to regularize ML models?



n

Loss = y; — f(a; SN f,f < Tikhonov regularization
H

(

This particular regularization is used in ridge regression



How do we find the function f(x) that minimizes this loss function?

We already know we can write this function (as any function in this
Hilbert space) as

O

fl@) = amK(w,zm)

m=1

But this sum extends to infinity, so it’s not very useful...



How do we find the function f(x) that minimizes this loss function?

We already know we can write this function (as any function in this
Hilbert space) as

O

fl@) = amK(w,zm)

m=1
But this sum extends to infinity, so it’s not very useful...

However, if we are interested in a specific function f(a) that minimizes
the loss function on the previous page, we can write

n
flx) = Z amK(z, zm)
m=1
where the sum runs over the finite number of training points.

(This result is one of what is known as the Representer Theorems)



Let me remind you that the ML problem minimizes

n

> (i — f@) + MS Pu

(

and

(f,9)n = Z (/. §bn)>\iga On)

n=1

where \; are the eigenvalues of the kernel.

What if some of the eigenvalues \;, are zero?

(This will be important for quantum machine learning ..

stay tuned)



Note that we now have two Hilbert spaces: the L? and RKHS.
The basis states ¢; are orthonormal in L?.
The basis states ¢; corresponding to A; # 0 span the RKHS.

Consider a function

O
flz) = aii(z)
1=1
In L2, it has the norm:
O
2
1A= lai
1=1
In RKHS, it has the norm:
dim of RKHS

1A= > lal*/x

1=1



[f the function f(x) is in RKHS, the decomposition

O

flz) = ai(z)
1=1
will only have non-zero coeflicients a; that correspond to non-zero A;

[f (a part of) the function is not in RKHS, that part of it cannot be
learned using kernel regression.



Another way to look at it:
Machine learning problems solve regularization problems.

Kernel ridge regression regularizes the norm || f||4 in RKHS,; i.e. the

cost function is
mn

> (yi — fla)” + NIl

1
Imagine now that some of the kernel eigenvalues \; are zero.

The corresponding terms in the norm will be infinitely large so the
corresponding a; cannot be learned.

The larger the eigenvalues A;, the easier it is to learn the corresponding
a;.



The essential part of building a ML model is to find the right kernel
function K (z, z').

How is this typically done?
One starts by assuming some functional form for the kernel function.

A few popular choices of the kernel function include:
d

)

Polynomial: k(zx, x") = [1 + (z, ZIJ/H
Radial basis: k(x,z’) = exp {—W(iL‘ - iIJ/)ﬂ :

Neural network: k(x, ') = tanh [a1<$, x') + ag} ,
These functions are parameterized by a few parameters, such as d, or
a1 and a9, or 7y, or & and [ in the examples above.

Having chosen a particular functional form of the kernel function, one
varies these parameters to find the best model.



A few examples ...



Kernel Ridge regression

The functional to minimize
n

2
> (Wi — F@)* + Mot spnce

1
is equivalent to that in ridge regression, except that the model now is
in the high-(/V)-dimensional Hilbert space.

Thus, we are dealing with Kernel Ridge Regression.

Because the shapes of the functions f(ax) can, in principle, be arbi-
trary, Kernel Ridge Regression is capable of building arbitrary models,
not just linear models.



To build the model, we start by defining the kernel function K (x, z’).

Next, we need to find the equations for the coefficients a5 in

fl@) =Y o;K(z, ;)
=1

The square-of-the-differences term can be written in matrix form as
n

> (yi— flx) = (y—Ka)' (y — Ka)

1
The regularization term can be written in matrix form as

AlIfIP = X Ka

and the solution for « is
a=[K+M| 1y



The matrix K is a square n X n matrix with elements K(x;, x;),
where @; and x; are the training points.

Given &, we can write the estimator of the model at point a*
f@) =k (%) =
=k (z)[K+ M|y

where




We can see that the model is written in terms of:
= The vector of observations y;

= The square matrix K, whose elements are the kernel functions
K(x;, x;);

= The column vector k(x*), whose elements are the kernel functions

Thus, the problem boils down to finding the kernel func-
tion K(x,z’).

How is this done?



We start by assuming some function form for the kernel function.

A few popular choices of the kernel function include:

Polynomial: K (x, ') = [1 + (x, mlﬂd,

Radial basis: K (, :c/) — exp {—W(CIB — wl)ﬂ ,

Neural network: K (x, ') = tanh [a1<a}, x') + CLQ} ,

: : / ‘wl o w]’ -
Rational Quadratic: K(x,x') = |1+ ,

These tunctions are parameterized by a few parameters, such as d, or
a1 and a9, or 7y, or & and [ in the examples above.

Having chosen a particular functional form of the kernel function, one
varies these parameters to minimize the validation error.

For Kernel Ridge Regression, this is often done through cross-validation
or by grid search.



Using kernels for classification problems



[ J
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Multiple separating hyperplanes possible
Which one is the best?




What if the data are not linearly separable, as in this one-dimensional
example:

X Variable



This can be taken care of by a non-linear transformation. In particu-
lar, transforming the inputs as x — sin(z) yields:

T T T T T T T T T
-1.00 -0.75 -=-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X variable

[ntroducing another feature as x9 — sin(xy) yields:

1.00 A
0.75 4
0.50 A
0.25 A
0.00 -

—0.25 A

New variable = x;

—0.50 A

—0.75 4

X variable - x;




This is an example of lifting data to a higher-dimensional space to
make 1t separable:

1.00
0.75
Q 0.50
)
[IITITTIIITITIN [ IIIITIIT ] O o0z
re)
18]
= 0.00 .
:> © o Py
> 025 ®
= ® PS °
' U o050 ®
—4 -2 0 2 4 =z °® °
X variable 075 ] ’. g °
-1.00 v b

X variable = x;
In 1D, the classes are not linearly separable

In 2D, the classes are separable by the zo = 0 line



Support Vector Machine or SVM

SVM is most commonly used to classify data that are not linearly
separable.

We will apply it to the following example of clearly non-linearly-
separable data:




\Z\ (\_ ?ro QCBOV' °«C Cx- 730"‘ %‘K
*TLX x°>__

\q:\

unwt veetor



Let me summarize what the figure on the previous page depicts:
= The equation for the hyperplane is 3 T + Bo=10

= The shortest distance between a point & and the hyperplane
s (872 + ) /181

How does one find the coefficients 3 and (5 of the hyperplane?



One way to determine the optimal hyperplane is by maximizing the
distance M from the data points.

'/\@\ \\

Note that we want every point to be at least the distance = M away
from the hyperplane.



Recall that the distance of point x; from the hyperplane is
(8" + ) /18]

So we want for each point in the dataset:

Yi (ﬂTfBz' +50) /1Bl = M

or

Yi (ﬁTfBz' + 50) > M|B|



Note that if we scale each of the 5 coeflicients by the same factor, the
(in)equality

Yi (5Tfl3@' + 50) > M|B|
is preserved.

Therefore, we can arbitrarily rescale 3 and [ to have

Bl =1/M,

which will lead us to the condition:
T
Y (5 $i+5o) > 1
for every point in the data set.

So, to find the optimal hyperplane, we want to minimize |3|, while

ensuring 1, (,8 TZBZ' + ﬁo) > 1 for every data point.

Use: https://en.wikipedia.org/wiki/Lagrange multiplier



We can do this by minimizing the following (Lagrange) function:
1 n
L= 5\5\2 — Z% [yz (ﬁTiBz‘ + 50) — 1}
[

where «; are chosen such that

Qv {yz (,8 T:EZ- + 5@) — 1} = (0 for each ¢
Let’s take the derivative of L and set it to zero:

n
B = Z Y%
nZ
0=> o
i

We can see that the coefficients 3 are given by the Lagrange multi-
pliers «;, which can be found numerically.



One way to find the Lagrange multipliers is by restricting «; to be
positive.

If we then substitute the equations on the previous page into L, we

will get

n

Lp= Z a — — Z Z ozzcu]yzy]a:Ta:] subject to a; > 0
1=1 7=1

It can be shown that L p provides the lower bound for L.

The minimum of L can therefore be found by maximizing L p.

If interested, check this https://en.wikipedia.org/wiki/Wolfe duality



Note that the condition
% {yz (ﬂ T:cz- + ﬁo) — 1} = (0 for each 7
implies the following:

= If a; > 0, then [yz (,8 T:BZ- + ﬂ0> — 1} = (0, which means the point

x; lies on the boundary of the margin slab.

= It {yz (,3 T:Bi + 5()) — 1} > (), the points is outside the margin and
v, = 0

Therefore, the final model coefficients

n
B=> aym;
i

are given in terms of the points x; that lie on the boundary of the
slab.

These points are the support points.



Support Vector Machine (SVM)
We will now consider the case of classes that are not linearly separable.

To do this, we must first allow some points to be on the wrong side
of the margin, as in his plot:

Previously, our condition was

Yi (ﬁTﬂBz‘ + ﬂo) > 1



Now we have to require that
T
Yi (ﬁ a?z'+50) >1-¢
where &; = 0 if the point is on the right side of the margin.



As before, we want to maximize the margin (or minimize |3|), but let
us now add another constraint:

Z &, < C = const < this will add a cost term to the L function
)

The Lagrange function will be
n

L= %WZ > o {yz (5T=’B¢ +50) — (1 - &')} + CZ&' - ZMS@

.

[/

This optimization problem has the following conditions:
i€ = 0,
Qv [yz (5 Lo + 50) — (1 - 5@)} =0,
{yz (ﬁTfBi + 50) — (1 - &')} > ()

The goal is to find the minimum of L by varying 3, 5y and &;.




By setting the corresponding derivatives of L to zero, we get:

= (' — p; for all s.

By replacing these back into the equation for L, we get:

Lp = Z o — —Z Zozzoz]yzy]w x;  subject to a; > 0
1=1 7=1

Again, L provides the lower bound for L.

The minimum of L can therefore be found by maximizing L p.



S0, we need to maximize
Lp = Z X5 Z Z YY)
1=1 7=1

or

Lp = ZO‘Z -5 Z Z Qi 5YiY (x;, j>

7,121



To deal with non-linearities, we will now introduce feature map:

x; = O(x;)

which gives us

Lp = Z&Z — _ZZO&LO‘]%QJ z;), o(x >>

=1 1=1

But, remember,

(®(x;), ®(x;)) = K(xj, ;) is the kernel function

S0 we can write Lp as
n

1 n

Lp=) aj— 5 > ) aiajyyiK(m, @)
1 1=1 1=1

which can be maximized numerically to find the coefficients «; and

the parameters of the kernel function A’ (x;, ;).



What is the equation for the hyperplane that separates the classes in
the high-dimensional space?

n
In the high-dimensional space: B = Z oY (T;)
1

f(x) =B p(x) + By =

1
To find Sy, we can use y; f(x;) = 1 for any point, for which «; > 0.

Again, we see that the solution is written in terms of the sum of the
kernel tunctions.

Once and the kernel functions are defined and «; are found, we know

flz).



Can we compare SVM with Ridge Regression”

Let’s take another look at the loss function we need to minimize in
order to train SVM.

We started by saying that we need to minimize |B]° subject to the
following conditions:

Yi (5Tfﬂz‘ +50) >1-¢& with§ >0
and

Zﬁi < C = const
1

How about we simply write
&> 1y (B + )

and vary 3 and Sp to find the minimum of the following function:

L(3, By) = %]6\2 + Ci [1 — Y (5T=’B¢ + 50)L



The problem is equivalent to minimizing the following function:

L(B, ) = \BI2+Z 11—y BT+ )]

This is equivalent to minimizing the following function:

LB, o) = I8 + D max [0, 1~ i f (1)

The red part is the the same as the regularization term in Ridge
regression.

The green part is called Hinge loss



Linear Ridge regression:

Minimize L(3,5y) = _>"5|2 + Z

SVM:

Minimize L(,B, ﬁo) — %)\‘,@‘2 + Z max [O, 1 — yzf(ajz)}



For kernel SVM, a few popular choices of the kernel function include:

Polynomial: k(z,z’) = [1+ (=, Cﬁlﬂda
Radial basis: k(, :13/) = exp [—’V(CB — CE/)} :
Neural network: k(z, x’) = tanh [a1(z, ') + ao]

In the following example, we will use the following kernels:

e the polynomial kernel with d = 1 (which is equivalent to linear
classification), d = 3, d = 6 and d = 100

e the radial basis kernel, or RBF.



Here’s the data we're classifying, dimmed:

10 4

-10 4

~10 5 0 5 10 15

SVM with the RBEF kernel produces this for the boundaries of the
margin and the separating hyperplane:

10 4

10 5 0 5 10 15



Let’s add the support vectors (as open circles):

T T T T T T
=10 -5 0 5 10 15

Here’s what we get with the linecar kernel (d = 1):

1 T I I I I
—10 -5 0 5 10 15



Here’s what we get with the polynomial kernel (d = 3):

Here's

T 1 1 1 1 I
—10 -5 o 5 10 15



Here’s what we get with the polynomial kernel (d = 100):

T T T T T T
-10 -5 0 5 10 15



Now, since we are playing with this, let’s distort the data to make
them look strange, — will our classifier still perform?

20 4
10

x 0]

=10 4

=20 -

—400  —300  -200  —100 0 100 200

Here’s what we get with the RBF kernel:

=

20 -

-10 -

—20 4

400  -300  —200 200



150 -

100 -

—50 -

=100 1

=150 4

15 -l0 -5

150 1

100 4

[
50 1

=100

=150 4

P —— = ——
J—

——— - -

—— et T — -
i T

e
B —
-

15 -10 -5




Gaussian Process Regression — what we will do:

Our goal is to regress data Assuming zero noise variance:

With noise variance: Including model uncertainty:

Including noise in GP is equivalent to regularization in KRR.



Take a look at the codes for Gaussian Process Regression in

gaussian-process-regression.ipynb

The code uses sklearn and TensorFlow

TensorFlow will offer more control and flexibility, e.g., sampling func-
tions directly from the posterior, as shown here:

Posterior Sample
10 ® Observations

Observations (y)

-10

0 5 1 15 20

Input points (x)



Gaussian Process Regression

We have already learned a powertul and general regression tool: Kernel
Ridge Regression (KRR).

Why do we need another regression model?

Gaussian Process Regression does what KRR, but also allows us to
calculate:

= Bayesian uncertainty of our predictions

As we shall see, this can be used, at least, for two powerful applica-
tions:

= Bayesian optimization

= Building better kernel functions



Gaussian Process

Consider the following linear regression function in an /N-dimensional

space:
(1)
f(@) = (6o Br,--- . By) | 1)

\¢n(x)/
Each of the functions y;(a) is some non-linear function of @, such as;
for example:

- _
@;(x) = tanh |a; Z T+ b;
| =1L

And x is — as before — p-dimensional:
L]
€XT =

Lp



The equation

flx) =

[

(607617'“ 75N)

depicts the following Neural Network:

%/

=t

p1(x)

\SON:(ZL’) )

\\./

\




If all of the parameters a;, b;, and By, 51, - - , Bn are fixed, then the
NN

1

%@é\‘

S\

produces for each @ a single value equal to f(x).




Let us now replace each of 0y, 51, -+, Bp with a random variable,
each distributed according to some distribution.

Since the variables are random, each time we draw a value for Sy, 51, - , B;
and evaluate the NN, it will produce a different, random result.

Thus, the output of the NN for a fixed « is a random variable.

The Neural Network becomes a Bayesian Neural Network.



[f we plot the output f(a) of a Bayesian Neural Network as a function
of x, it will be something like this:

where each curve corresponds to a different combination of 3y, 51, - -+ , 8.

How do we use a Bayesian NN to model data?



One way is to select only the functions that go through our data points
and discard all other functions.

We want to go from this:

To this:

In principle, this can be done by sampling functions from the original
distributions. But not in practice. There are just too many functions.



Perhaps, the Bayes’ theorem can help us?”

Let’s denote a function corresponding to a specific combination of all
parameters of the NN collectively by 6

HjNN(aiabiaﬁoaﬁla'”75]\[)7 Wherei:laN

The output of the NN is a distribution of such function, which we can

call p(6).

Our goal is to find the functions 6 that give a good description of the
data: {X,y}.

Let’s set the notation straight:

p(0|X) is the unconditional distribution of the NN outputs
at the locations of the input space given by X

p(0|X,y) is the conditional distribution of the NN outputs
at the locations of the input space given by X

conditioned by the observations y



We want to condition our distribution:

p(0|1X) = p(0| {X,y})

The Bayes’ theorem gives us this conditional distribution:

_ p(ylf, X)p(0]X)




This helps.. but not much.

Even if we could calculate p(0] { X, y}), how would we use it to make
predictions?

Our ultimate goal is to make a prediction of y* at some point x*.
We can write an equation for the distribution:

'l (X,v)) = [ ol 0)p(6] (X, v} 8
and use the LHS to predict the most probable value of y™*.

BUT... look at the integral on the RHS. How many parameters de-
termine 67

There are N 4+ 1 3; and then there are 2N of a; and b;, which is a
total of 3N + 1. With N = 20 (a modest NN), we need to evaluate
61-dimensional integrals in the equation above .. Yikes!



And this is where Gaussian Processes help!
Let’s increase the size of the NN by making N — oc.

[f each of the inputs into the output (red) neuron in the NN

1

" %/
: M — i‘\
;%'
o

are independent random variables and N — oo, what is the distribu-
tion of the output values for fixed x?

The central limit theorem says this distribution will be Gaussian.



This distribution must remain Gaussian for all .

Thus, f(x) is a Gaussian process.

This helps a lot because the integrals on the previous page can be
dealt with analytically!

Let’s see how.



Our goal is to infer a function that describes the data:

Data = f(x)+e¢, where the noise is usually Gaussian-distributed (with
zero mean and some variance o2):

e ~ N(0,0°)

Let’s first consider a linear model:

flz)=p8"z.



Recall that, given a single observation y; at a;, the model likelihood
is defined as equal to p(y;|3, ;).

We will assume that each data point is independent.

Then, for n observations ¢y at positions in the data matrix X, the
likelihood 1is

n

p(ylB, X) = | | p(yilB, ;)

1=1

Because the function f(a) differs from the data by Gaussian noise,
we can write

1 exp (yi—Blx;)
2w o 202

p(yilB, z;) =

Thus, the model likelihood, given the data y. is a product of Gaus-
sians.



We can write the likelihood explicitly:

L o |y - Xp)
<27T02)”/2 202

p(ylB,X) = | [ p(yilB, ;) =
1=1

Our goal is to use the Bayes’ theorem to calculate the posterior:

_ pylB, X)p(B)
p(B’yv}() o p(y!X)

Note that p(y|X) is just a normalization constant that does not de-
pend on 3.

As always, we have freedom in the choice of the prior (as long as our
choice is reasonable), so we choose it as:

p(IB) ™~ N(O7 Ep)

which is a joint normal distribution with zero mean and co-variance
matrix 2y.



We have:

B XpB) 1 | |ly-x872
p(ﬁ\y, X) — p(yIX) — ZeXp o 952

where we put all constant terms into the constant A.

exp -8, ']

The last equation can be written as

Iy X) = o |~y — X8) [y~ X8| exr [-B7E;

which can be further re-written as

1

(Bl X) = e |

1

—5(B8 n)'CB - u)]

where

—1
= o2 [O'_QX Ix + E;l}

XTy mean of the posterior

and
.| 9T 1]t | |
C = [a X "X + Ep } covariance matrix



So we have the conditional distribution of the model parameters p(3|y, X)

given the data y, X.

Again, it is a normal distribution with

mean fL = U_QC_lXTy

and covariance matrix C !

Now, we need to multiply this by p(y*|x*, 3) and integrate over 3 to

obtain

ply*|z*) = /ﬂ p(y*|z*, B)p(Bly, X)

p(y*le™) = / exp | —
IS,

(v — BT")’]

202

B-wiCB-p|ds

[ 1
eXp —5

It’s easy to see that this distribution is going to be Gaussian:

p(y~|E™) o< exp

(Y= p)?

262




[t’s easy to see that this distribution is going to be Gaussian:

) o

Yt — [

p(y*lm*)ocexp _( 2A2>
o

The means and the variance of this final distribution can be found by
expanding the terms in the integral to be:

6 =2*'C7lz* with C= |07 X'X+X,"
These are the conditional mean and variance.

The mean can be used to make predictions.

Let’s compare this with what we have for linear regression and ridge
regression.



Linear regression:

XTy

Linear Ridge regression:

~ —1
3=zt (XTX + )\nI) X Ly

Linear (Gaussian process regression:

—1
0=x" L2 {0'_2X X + Z;l} XTy



In order to describe non-linear data, we introduce feature map:

x — @ = vector in the high-dimensional space
X =&

X' 5@l

Then, we have

i= o' T — ot To=20 1o Ty,

52 — o*TC~lp* with C = {J—Q@ch T 251}
Let us now write

C-o? @ ox, 10| 3,!
ezl =020 [ex,0 T 4 o]
clege! —nel - 2c ol lex,e T 4 o]

—1
clol—o'm0" ox,0 " 1 o]



This gives:
—1
= Tsel len,el oMy

For variance, we will use the so-called Woodbury formula
—1
(E+FGH) !=E! _E"F (G—1 + HE—lF) HE !
applied to
—1
cl=lo e eyt

Replacing:

E-3,! Glole? Foa! H- @
we get

—1

=3y el 171 ex,eT| ex,

Remember the variance is

5_2 — Qo* TC_l(.P*



We thus have:
—1
= Tzel len,el 1oy

—1
=" To - o Tn e (om0t 4 0| exet
Notice that everything is written in terms of CIJEJpCIJT or ¢* TEpgo*
or X,

Remember also that 3, is the covariance matrix of the prior, which
we have some freedom to choose.

To simplify matters, let’s choose it to be 3, = 1.

Then, we get:
—1
0= T’ {chI)T + 021} y

~1
52 — SO*TSO* B SO*T(I)T [(I)(I)TJFUQI} Bt



Look closely at these equations:

0" Yo" = k(x*,x*) is the kernel function at (z*, z*)

®p = k(x*) is a vector of kernel functions K (x;, ™)

&b = K is a matrix of kernel functions K (x4, :Bj)

With this in mind we can write:

i = kT (") [K + 021} o
652 = k(x*, x*) — kT (z*) [K + 021} k()

We see that everything is determined by the kernel functions K (x, ).



You might ask if the choice of 33, = I is justified?

I will say: It doesn’t matter. If the prior co-variance matrix is not
identity, I can redefine the kernels, as follows:

0  'S,0" = K(z*, %) is the kernel function at (z*, ™)
&3, = k(x™) is a vector of kernel functions K (x™, x;)

DX,P I'— K is a matrix of kernel functions K (x;, @ j)

We can do this, because
= Xy 18 Just a constant matrix.

= X, Is positive definite (since it is a co-variance matrix).



Final results for Gaussian Process regression:

Mean of the predictive distribution to be used as the prediction of the
model:

—1
i = kT (" [K + 021} y
Conditional variance to be used as Bayesian uncertainty:
—1
52 = k(z*, x*) — kT (z*) [K + 021} k(z*)

Compare this with what we obtained for Kernel Ridge Regression:

AN

fl@®) =k (x%)a =
— kM [K+ |ty



How are (Gaussian Processes trained?
e As before, one starts by choosing a function for K (x, ).
e The parameters of this function are then varied to maximize p(y|X).

e Recall p(y|X).. This is the term in the denominator of the Bayes’
theorem:

pwlX) = [ o0, X)p(01X)d0
This multiplies the model likelihood p(y|@, X) by p(8|X) and inte-
orates over all random function values.

When we integrate over a random variable as 6 above, we are ‘marginal-
1zing’ this variable.

The likelihood integrated as above is thus called ‘marginal likelihood’.



Marginal likelihood

Marginal likelihood for a Gaussian process can be expressed in terms
of kernels. — How?”

To answer this questions, let’s consider again the prior p(6|X).
I remind you that

0 represents tunctions drawn from a (Gaussian process

p(0|X) is the unconditional distribution of the NN outputs
at the locations of the input space given by X

Because the functions 6 are drawn from a Gaussian process, p(6|X)
1s a multi-variate Gaussian.

This means that p(f]x;) and p(f|x;) are both Gaussian with some
covariance Cov(x;, ;) between them.



We will choose the covariance of the Gaussian Process prior to be the
kernel function:

Cov(z,z’) = K(x, x')

This is actually equivalent to the choice of the prior we had previously
made:

To see this, consider
f(x) = B" ()

Then:

E[f(z)] = ¢(z) 'E[B] =0 and
Cov(z, ') = E[f(x) f(a')] = ¢ ' (x)E[BB 'p(x) = ¢ ' (@) Zpp(a)



Our goal is to evaluate the marginal likelihood:

p(y|X) = /9 p(y6, X)p(6]X)do

It is more convenient to work with the logarithm of marginal likeli-
hood.

Given that the prior’s covariance is the kernel matrix and the inte-
orand is a product of two Gaussians, it is actually possible to write
this in terms of the kernel matrix as follows:

1 1 n
log p(y|X) = —in (K + 021) Y — §log K + o°I| — glog 2T

The purpose of training a Gaussian process is to find the parameters of
the kernel function K (x, ') that maximizes the logarithm of marginal

likelihood.



End of Part 1

Submit questions about Part I by the end of the day to
rkrems@chem.ubc.ca
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For example, in

nnnnnnnnnnnnnnn

central —
science e e s o 2007, 3,1397-108

Optimizing Chemical Reactions with Deep Reinforcement Learning
Zhenpeng Zhou,T Xiaocheng Li,i and Richard N. Zare* "

fDepexrtrnent of Chemistry, Stanford University, Stanford, California 94305, United States
*Department of Management Science and Engineering, Stanford University, Stanford, California 94305, United States

The experimental variables are
p =gas pressure, u=voltage, v=flow rate.

One could work with this 3-dimensional feature space.

However, what if these features are not the best? What it some com-
binations of these features are better for modelling reaction yields?

To determine the best features, the authors engineered new features
2 .2

as: wu, v, pu, pu, uv, p/u, p/v, u/v, p>, u’, v

Using these new features as variables, they trained 11-dimensional
linear regression and looked at the three main variables determining
the variation of their output. The result was p/v, /v, p2.



We will need two important concepts for today’s discussion:

The Bayes’ theorem
Likelihood



Bayes’ theorem
e Bayes’ theorem is the basis of Bayesian inference.

e It shows how a degree of beliel must be modified to account for
evidence.

e Bayes’ theorem operates with probabilities or probability densities.

e Therefore, the degree of belief must be expressed as a probability:.



First, some basic definitions:

P(X) is a probability if X is a discrete variable (e.g., heads or tails)
P(X]Y) is a conditional probability — i.e. probability of X given Y.

If X is continuous, we must work with the probability density.

b
/ px(x)dx is the probability that X € |a,b|, if X is continuous.
a

In this case, px(x) is the (probability) density.

We will also encounter conditional probability density:

Px|y—y(®) =px(z|Y =y)



For two events A and B, Bayes’ theorem is

P(A|B)P(B)
P(A)

P(B|A) =

An event is a realization of a random discrete variable:
A={X=a2} B={Y =y}

Consider a concrete example. Assume that you’re presented with
three coins, two of them fair and the other a counterfeit that alway:
lands heads. If you randomly pick one of the three coins, the
probability that it’s the counterfeit is 1in 3. This is the prior
probability of the hypothesis that the coin is counterfeit. Now after
picking the coin, you flip it three times and observe that it lands
heads each time. Seeing this new evidence that your chosen coin
has landed heads three times in a row, you want to know the
revised posterior probability that it is the counterfeit. The answer

Ehe New Pork Eimes

The Mathematics of Changing
Your Mind

f v = ~» []



Example: An undergraduate student wants to calculate the probabil-
ity that she/he will get into a chemistry graduate program if she/he
gets an A in Chem121.

Rephrasing this in the language of Bayesian inference, this problem
should read something like this:

You meet a first-year undergraduate chemistry student. The student
asks you: what is the probability that I will be admitted into your
orad school?

You say: 5/100
The student says: but I just passed Chem121 and got an A.
You say: In this case, the probability is 16.7/100

How did you come up with this answer? Let’s see...



1,if Chem121 grade > A

0, otherwise

Define = X = {

v _ 1, if in grad school
B 0, otherwise

number of graduate students

( ) total number of undergraduate students
PX =1y =1) = number of graduate students with A in Chem121
total number of graduate students
P(X =1) = number of A grades in Chem121

total number of undergraduate students



For example, let’s say that 1 in 20 undergraduate students go to grad
school and that 2/3 graduate students had an A in Chem121 when
they took it. The number of A’s in Chem121 is typically 1 in 5.

The naive probability to become a graduate student is 1/20 = 5/100.
The Bayesian probability, given an A in first year Chemistry, is
- PX|Y)P(Y) 2/3x1/20

PY=1X=1)= 59 ¥ = 16.7/100




For two events A and B, Bayes’ theorem is

P(A|B)P(B)
P(A)

P(B|A) =

Or, we can use A = {X =2z} and B = {Y =y}, to write Bayes’
theorem for two discrete random variables X and Y as

If X and/or Y are continuous, replace the corresponding probabilities
with probability densities.

For example, it X is continuous,
P(X = 2|V = y) = px|y_y(z) and

P(X = x) — px(x) are the probability density functions.



Likelihood

Likelihood = likelihood function

Let’s start by saying what likelihood is not.

Likelihood is not a probability or probability density:.

Consider first the case of a discrete random variable X.

Consider a stochastic process that produces one of the values of X

Every process is usually a function of one or more parameters 3.

Stochastic process = Flip of a coin

Random variable = X = {H, T}

Parameter 5: Fairness of the coin — the outcome depends
on fairness

Define 8 as a continuous variable € [0, 1] equal to the
probability of H

Example:



Given (3 thus defined, we can calculate the probability of observing
HH in two coin flips:

Likelihood is a function of . given an observation.

[t 1s defined as follows:
L(B|HH) = P(HH|p)
Why do we need likelihood?

Let’s say you have a coin, but you don’t know how fair it is: i.e. you
don’t know By

Likelihood allows you to estimate (..;,! Let’s see how..



First, note that likelihood depends on the observations!
[f we flip the coin twice and get HH, L(8|H H) is the red curve below.
For three coin tosses producing HHT, likelihood is the green curve

For four producing HHTH, we get the blue curve.

1.0

HH

0.8

Likelihood (B)
o

o
-9
I

o
%]
1

HHT
HHTH

o
o
I

0.0 0.2 0.4 06 0.8 1.0
B (defined as equal to the probability of H)



Since we have a particular observation, it is reasonable to assume that
Beoin corresponds to the maximum of likelihood.

For this value of 5 the stochastic process is the most likely to lead to
the result we observed.

1.0

HH

0.8

o
=]
1

Likelihood(f)
o
g

o
%]
1

HHT
HHTH

0.0 1

0.0 0.2 0.4 06 0.8 1.0
B (defined as equal to the probability of H)

Notice how the result HH suggest that B.,;,, = 1, HHT suggests
Beoim ~ 0.65 and HHTH suggests Beoin ~ 0.79



If our random variable is continuous, likelihood is defined as equal to
the probability density:

L(BIX =z) = px(z]f)

Note that on the left hand side x is not a variable, but a fixed outcome
of random variable X

Please do not confuse likelihood with probability.

[t is wrong to say that L£(S|observation) is the probability that 8 has
some value given an observation.



A brief overview of Gaussian Processes



Gaussian Process Regression

We have already learned a powertul and general regression tool: Kernel
Ridge Regression (KRR).

Why do we need another regression model?

Gaussian Process Regression does what KRR, but also allows us to
calculate:

= Bayesian uncertainty of our predictions

As we shall see, this can be used, at least, for two powerful applica-
tions:

= Bayesian optimization

= Building better kernel functions



Consider the following model:

f(x) = (Bo, b1, -, BN) gpls(w)
\on()/

which can be depicted as a Neural Network:

Z%' /




If all of the parameters of the NN are fixed, then the NN

1

%/
M‘\‘

produces for each @ a single value of f(x).




Let us now replace each of 0y, 51, -+, Bp with a random variable,
each distributed according to some distribution.

Since the variables are random, each time we draw a value for

607617'“ 75]\7

and evaluate the NN, it will produce a different, random result.

Thus, the output of the NN for a fixed @ is a random variable.



[f we plot the output f(a) of such a Neural Network as a function of
x, 1t will be something like this:

where each curve corresponds to a different combination of 3y, 51, - -+ , 8.



To model data,

We want to go from this:

To this:




We want to condition our distribution:

p(0|1X) = p(0| {X,y})

The Bayes’ theorem gives us this conditional distribution:

_ p(ylf, X)p(01X)

The prediction at * can be made using:

plylz*, (X, y}) = /9 p(y*|x*, 6)p(6] (X, y})do



Let’s tncrease the size of the NN by making N — oc.

[f each of the inputs into the output (red) neuron in the NN

are independent random variables and N — oo, what is the distribu-
tion of the output values for fixed x”

The central limit theorem says this distribution will be Gaussian.

This distribution must remain Gaussian for all .



Thus, f(x) is a Gaussian process.

This helps a lot because the integrals on the previous page can be
dealt with analytically!



i(x*) =k (x*) [K + 021} Ty
52(x*) = k(z*, %) — kT (x*) [K + 021} ()

We see that everything is determined by the kernel functions K (x, ).



Final results for Gaussian Process regression:

Mean of the predictive distribution to be used as the prediction of the
model:

—1
i = kT (" [K + 021} y
Conditional variance to be used as Bayesian uncertainty:
—1
52 = k(z*, x*) — kT (z*) [K + 021} k(z*)

Compare this with what we obtained for Kernel Ridge Regression:

AN

fl@®) =k (x%)a =
— kM [K+ |ty



The prediction error in GPR can be used for Bayesian optimization

652 = k(x*, x*) — kT (z*) [K + 021} ()



Optimization of expensive black-box functions

Experiment
P &
// *

- o
/ \
;

Experiment
Parameters

\ /

\*/ Bayesian optimization

Experimental parameters = x

Outcome of experiment = y

Surrogate ML model A of the experiment outcome = Optimize A(x)



Many applications in Chemistry — e.g. solving inverse problems

-
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@ Gheck for updates | Bayesian machine learning for quantum
molecular dynamics
Cite this: Phys. Chem. Cham. Phys.,

2018, 21, 13352 R Y HI’EI’TIS@




Bayesian Optimization (BO)

As mentioned earlier, BO is designed to optimize black-box (e.g. un-
known) functions without gradients.

Therefore, it is particularly well suited for functions that are very
difficult to evaluate.

How does it work? BO uses Gaussian processes as surrogate models
of the black-box function.

Recall that training a GGaussian Process produces:

6% = k(x*, x*) — k(") {K + 021} k(x™) < uncertainty



BO is an iterative process.

BO starts with a few evaluations of the black box function at random
places. The evaluations are used to train a Gaussian Process.

The results of the training are used to build an acquisition function:
a(x) = ji(x) + k6™ (w)

At each iteration:
= The acquisition function is maximized to find @& ax.
= The black-box function is evaluated at xpax.
= The result of the evaluation is added to the training set for GP.
= A new (more accurate) GP is trained.
= A new acquisition function is built from the new GP.

= A new value of &y« 1s determined.



This is how Bayesian Optimization works:

VaWvA..
A VA
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Inverse problems

Microscopic Scattering
interactions experiment




Inverse problems
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experiment




Inverse problems




-

7/

o
o

0.4

>
=
Ko}
@®
QO
o
jud
[a
C
e
)
O
@®©
[0}
o

Red curve: Iteration 8

1 1 1 1

0.8 1.0 1.2 1.4 1.6 1.8
Translational Energy




How many potential energy points does one need to know to describe the complete surface?




Quantum scattering calculation

Black curve — using an analytic
fit of the PES based on 8700 points

Red curve — using a GP model of PES
based on 30 points
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At every iteration, a completely new global surface is constructed automatically




BO:

PES obtained using
290 points

o
D
1

©
w
1

©
N
1

Graduate student:

>
ot
Q0
©
Q0
(@)
jud
o
c
)
S
O
©
Q
a'd

o
=
1

PES obtained using
~17,000 points

T

0i3 0i4 0.5
Translational Energy (eV)

Example of a 6D system: OH + H, chemical reaction




Vector approach
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Inferring molecular properties from time-dependent observables




The choice of kernel is important!
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Inferring molecular properties from time-dependent observables




The choice of kernel is important!
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This is what happens with a poorly chosen kernel




Molecular Hyperfine Interferometry

Experiment
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Kroes, G.-J.; Maniv, T.; and Alexandrowicz, G. Nature Communications 8, 1537 (2017)
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Mean: p = % X
Expected value: E|X| = % X

Variance: 0%( — E[(X — p)?

Covarlance:

Cov(X,Y) = B[(X — B(X))(Y — E(Y))] = Bl(X — uz)(Y — py)



How are (Gaussian Processes trained?
e As before, one starts by choosing a function for K (x, ).
e The parameters of this function are then varied to maximize p(y|X).

e Recall p(y|X).. This is the term in the denominator of the Bayes’
theorem:

pwlX) = [ o0, X)p(01X)d0
This multiplies the model likelihood p(y|@, X) by p(8|X) and inte-
orates over all random function values.

When we integrate over a variable as 6 above, we are ‘marginalizing’
this variable.

The likelihood integrated as above is thus called ‘marginal likelihood’.



Marginal likelihood

Marginal likelihood for a Gaussian process can be expressed in terms
of kernels. — How?”

To answer this questions, let’s consider again the prior p(6|X).
I remind you that

0 represents tunctions drawn from a (Gaussian process

p(0|X) is the unconditional distribution of the NN outputs
at the locations of the input space given by X

Because the functions 6 are drawn from a Gaussian process, p(6|X)
1s a multi-variate Gaussian.

This means that p(f]x;) and p(f|x;) are both Gaussian with some
covariance Cov(x;, ;) between them.



We will choose the covariance of the Gaussian Process prior to be the
kernel function:

Cov(z,z’) = K(x, x')

This is actually equivalent to the choice of the prior we had previously
made:

To see this, consider
f(x) = B" ()

Then:

E[f(z)] = ¢(z) 'E[B] =0 and
Cov(z, ') = E[f(x) f(a')] = ¢ ' (x)E[BB 'p(x) = ¢ ' (@) Zpp(a)



Our goal is to evaluate the marginal likelihood:

p(y|X) = /9 p(y6, X)p(6]X)do

It is more convenient to work with the logarithm of marginal likeli-
hood.

Given that the prior’s covariance is the kernel matrix and the inte-
orand is a product of two Gaussians, it is actually possible to write
this in terms of the kernel matrix as follows:

1 1 n
log p(y|X) = —in (K + 021) Y — §log K + o°I| — glog 2T

The purpose of training a Gaussian process is to find the parameters of
the kernel function K (x, ') that maximizes the logarithm of marginal

likelihood.



Key difference between GPR and KRR:

The parameters of the kernel function in KRR are found by cross-
validation.

The parameters of the kernel function for GPR are found by maxi-
mizing marginal likelihood.

GPR model prediction:

—1
i =k Tz {K + 021} y
KRR model predicition:

A

fl@) =k (@*) K+ A"y



Model selection



Let’s say we have built two models with two different kernels.
How to tell which one is better?

The Bayesian approach gives us a way...



Model selection
e Consider a set of noisy data points.

e Consider two different models, such as, for example:

My and My

e How can we tell which model 1s better?

e We will adopt the Bayesian view to answer this question.



e Within the Baysian approach, we have for model M;:

Data| M;)P(M;)
P(Data)

P(M;|Data) = il

e For two models M7 and My, we can write:

P(Mq|Data)  P(Data|My) P(M;y)

P(Ms|Data)  P(Data|My) « P(Msy)

e We see that the ratio of the posteriors is equal to the ratio of the
priors times the following factor:

P(Data| M)
P(Data| M)

< the Bayes factor



e To calculate the Bayes factor, we need to compute P(Data|M,;) for
each model. How do we compute it”

e We can define the model likelihood as the following tunction:
L(B|Data, M;) = p(Data|8, M;)
e P(Data|M,) is the integral:
PDaaM;) = | p(Datal, Mp(31M,)43

e We have integrated the model likelihood over the distribution of the
model parameters.

e The result is the marginal likelihood.



e If we don’'t know anything about the data, we can set the priors for
different models equal:

P(My) = P(Mby)

e Then, the ratio of the posteriors is given by the ratio of the marginal
likelihoods:
P(M;j|Data)  P(Data|M;)

P(Ms|Data)  P(Data|M>)

e Thus, the relative magnitudes of the marginal likelihoods can be
used to tell which model is better.

e The trouble is, it is very difficult to calculate marginal likelihoods



Model selection .. let’s start over



Let’s say we have built two models with two different kernels.
How to tell which one is better?

When we train a model, we minimize a loss function or maximize log

likelihood.

Why not to just chose the model that gives a lower loss or bigger
likelihood? ... We can’t, because of overfitting



(zeneralization error

Definition: Test error = generalization error

Errr=FE {L(y, (X ))]T} where T = fixed training set

Expected prediction error:

Eir = E [L(y, f(X))} — E [Err7]



Bias vs Variance Trade-off

Consider an ensemble of data points that derives from the function
f(x) and some noise (&) inherent to the data:

Data = f(x) + ¢

The function f(x) is generally unknown and our goal is to infer it.
We build a regression fit of the data f(z).
Now we want to test the performance of the fit at some point .

The expected prediction error at xg:

EPE(xg) = E [(f(fbo) +e— f(fﬁo))Ql



Let’s expand the square in the last equation:

EPE(@0) = E | (f(a) + <~ flan))| -
B | (fa) - flan)'| + £ [2= (flen) - flan)] + B [

Note that for two independent random variables A and B:

E(A + B) = E(A) + E(B)
E(AB) = E(A)E(B
E [(A - B)Q] —E [(A)Q} VE [(B)Q _9E(A)E(B)

Variance of A with mean y = F _(A — u)?



In our case, what are the random variables?

= Noise £. Note that E(e) = 0.

Because E(e) = 0, the second term: E {25 (f(wg) — j?(azo)ﬂ =0

The third term: E(e?) = o2 is the variance of noise.

= f () is another independent random variable. To see this, imagine
selecting training data at random and producing f(ax). Each time,

f(ag) will be different.

= Note also that E |f(xg)] = f(axg) because the function f(a) is not
random; it is a well-defined (although unknown) function.

Let’s now deal with the first term:

B|(fa) - flan) | = B [Fan)] - 21 @0)E [F(w0)] + (a0



We will now add and subtract £ { f (xo)} E { f (xo)} to get:

N
B (flm) - flao))| -
(E []‘A’(ﬂfo)} — J"(«’L‘o))2 + (E [fQ(ﬂfoﬂ —E {f(ﬂ?o)} L {f(ﬁo)D
Bias’ {f(a:o)} + Var {f(a:o)}

The first term is the square of the bias of the model f .

The second term is the variance of the model f .



S0, we see that for a model f (), the expected prediction error
at xq is given by

EPE(xy) = Variance of data noise
+ Square of the bias of the model

+ Variance of the model

High Bias Low Bias
Low Variance High Variance

Test Sample

Prediction Error

/

Training Sample

Low High
Model Complexity

Figure source: T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer (2001)



S0, we need a good way to discriminate between models that also
accounts for their complexity:.



How do we account for model complexity?
The Bayesian information criterion:
BIC = —2loglik + d log(n)
where n is the number of training points
d is the number of model parameters
loglik is the maximum value of the log likelihood

It turns out that BIC is very closely related to the logarithm of
marginal likelihood in the large n limit

In particular,

. d
log( P(Data|M;)) =~ log(P(Data|model parameters, M;)) — 5 log(n)



BIC can be used to estimate the posterior probability of each model

M, as
|
—3BIC,

NG

M
|
. where N = Ze_?BICl
[=1

BIC is asymptotically consistent as a model selection metric

Given the family of models, including the true model, the probability
that BIC will select the true model approaches one as n — oo



Given,

. d
log( P(Data|M;)) ~ log(P(Data|model parameters, M;)) — 5 log(n)

We can define

d
BIC = LMLgpr — 5 logn

where d is the number of kernel parameters in GP regression to dis-
criminate between kernels

As we saw, this is an approximation to the logarithm of the marginal
likelihood, which is valid in the large n limit.

This can be used to build better kernels

The beauty: we will see that this works even for low values of n



Algorithm for optimal kernel construction

Start with conventional covariance functions (kernels), such as these ones:

kLin (%6, %) = X X5

1
kRBF<Xian) = €Xp (_§T2<Xiaxj))

5)
kMAT(Xz',Xj) = (1 + \/57“2(Xi,xj) + §7“2(Xz',xj))

X exp (—\/grz(xi,xj))

x; — %2\
k iy 8g5) — 1
rQ(Xi: %) ( 2a/?




Combine them using a greedy search algorithm

No kernel

RQ + MAT RQ + RBF

= A

RQ x LIN x RBF .-- |RQ x LIN + RBF| --- RQ x LIN + MAT

Duvenaud, D. K.; Nickisch, H.; Rasmussen, C. E. Additive Gaussian Processes,
Adv. Neur. Inf. Proc. Sys. 2011, 24, 226

Duvenaud, D. K.; Lloyd, J.; Grosse, R.; Tenenbaum, J. B.; Ghahramani, Z.; Structure Discovery in
Nonparametric Regression through Compositional Kernel Search, Proceedings of the 30th
International Conference on Machine Learning Research 2013, 28, 1166




The choice of kernel is important!

$.0.250
Q0
Q
€ 0.225
w
2]
= 0.200 -
o

15 20
BO Iterations

This is what happens with a poorly chosen kernel




The choice of kernel is important!

)
>
e
@
0
w
N
=
<

15
BO Iterations

Inferring molecular properties from time-dependent observables




Extrapolation of potential energy surfaces

Six-dimensional surface for H;0*
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- 10000

Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020)



Extrapolation of potential energy surfaces

Six-dimensional surface for H;0* (1000 ab initio geometries)

e Original Surface
Extrapolation
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Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020)



51 dimensions (5000 molecular geometries)

Hiroki Sugisawa, I. Sato and RVK, J. Chem. Phys. 153, 114101 (2020)



51 dimensions (5000 molecular geometries)

35000 .
30000 '] - ™ .. 'y L1
25000 "t "

20000 . Lt

Energy [cm™]

15000 * = * .

10000 == =, "

5000
0.6 0.7 0.8 0.9 1.0 1.1 1.2

Hiroki Sugisawa, I. Sato and RVK, J. Chem. Phys. 153, 114101 (2020)



57 Dimensional surface for aspirin
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Kasra Asnaashari and R. V. Krems, arXiv: 2707.04779 (2021)
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Hamiltonian parameters




Phase Il

Phase |

| -
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Hamiltonian parameters

Can Phase | be used to predict the properties of Phases Il and I11?




To do this, one needs to solve the extrapolation problem. How?

The key is in the complexity of the kernel function.

The complexity needs to be built up, but in a "physical’ way.




Heisenberg spin model

X X x
xxxx,(xX
X X X X XXXxx
x XX‘XXXX)(W"“'»H
x X X X XXXX00000004e] 1}
x X X X XXXXX0

Rodrigo Vargas, John Sous, Mona Berciu and R. V. Krems, Phys. Rev. Lett. 121, 255702 (2018)
Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020)




Generalized polaron model

H = Z ekc};ck + Z wqbgbq + Ve—ph
k q

Ve—ph = aH + fH>

i

sin(k + q) — sin(k)] ChroCh

Felipe Herrera, Kirk Madison, RK, Mona Berciu, Phys. Rev. Lett. 110, 223002 (2013)




Generalized polaron model

Felipe Herrera, Kirk Madison, RK, Mona Berciu, Phys. Rev. Lett. 110, 223002 (2013)




Polaron model

Rodrigo Vargas, John Sous, Mona Berciu and RK, Phys. Rev. Lett. 121, 255702 (2018)
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Quantum extrapolation problems

Choosing better kernels not only makes extrapolation possible,
but also allows models to extrapolate farther

Choosing better kernels is like replacing spectacles with binoculars
when it comes to quantum phase diagrams




This allows us to compute things we couldn’t imagine

Work of Hiroki Sugisawa

just a few years ago...

Hydrogen Hydrogen
Hydrogen Hydrogen
® Oxygen ® Oxygen

@’

10 N

Wave function of H;O5 at the MP2 quantum chemistry level

Direct approach: 220 years on a single core of Intel i7-9700K
Our approach: 8 days



Same models can be used for transfer learning

* Quantum dynamics calculations for complex
systems are difficult

* Such calculations must rely on approximations

e Can the results of approximate quantum
calculations be corrected by machine
learning?

A. Jasinski, J. Montaner, R. C. Forrey, B. H. Yang, P. C. Stancil, N. Balakrishnan,
R. Vargas-Hernandez, J. Dai and R. V. Krems, PRR 2, 032051 (2020)



Symbols (Machine Learning)
Exact (solid)
\ Approximate (dashed)

———
—_——

Cross section vs Energy

A. Jasinski, J. Montaner, R. C. Forrey, B. H. Yang, P. C. Stancil, N. Balakrishnan,
R. Vargas-Hernandez, J. Dai and R. V. Krems, PRR 2, 032051 (2020)
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If you know how to build the right kernel, predictions are easy!



... Can Quantum Computers help?



Better kernels lead to more powerful ML models!

Kernel functions are inner products in a Hilbert space.

Consider a quantum computer with n qubits, initially in state |0™).
Introduce a sequence of gates that produces a quantum state U (a)|0™)

and another state U (x)[0™)

The measurable square of the inner product:

O™ U (U () [0™)]

has all the properties of a kernel of an RKHS



Thus, projecting
UT (U (x)|0™) onto 0™

can be another way of building kernels for kernel ML:

K(z,2') = [(0"U (2" U (2)|0")]

Question: Can such measurements be used to build kernels for ML?
Question: What is the best way to build quantum kernels for ML?

Question: Can quantum kernels outperform classical kernels for ML?

= Quantum Machine Learning



What is the RKHS with the kernel function produced on a quantum
computer?

Consider the embedding of input features into quantum states:
x = [Y(x))
Define the kernel function as follows:

K (x,a") = [ (2)|g(a) |

Then,

K(z,2") = [(@(@)| (@) * = (b)) @) [y())
= (1p(z)|p(a)ib(z))= Tr|p(z)p(x))]

What is the RKHS that corresponds to this kernel function?



Consider a space of functions defined as follows:

f(x) = Trlplx)M] = (Y(z)[M|¢(z))

where M is a Hermitian operator acting in the space of d qubits.

K(z,-) := Tr|p(x)p(-)] is a reproducing kernel for each element of
this space:

f(), K(z,-)) = Trlplx)M] = f(z)

Question: what is the dimensionality of this RKHS?



We can write:

(K, Ky = [((@)[(2))]7 = Andn(@)dn(a)

where K, € RKHS and ¥ (z) is in the Hilbert space of the quantum
computer with d qubits.

This kernel function has < 4% non-zero cigenvalues.

What implications does the finiteness of the RKHS have for problems
that can be addressed with current-day quantum computers?



Thus, projecting
UT (U (x)|0™) onto 0™

can be another way of building kernels for kernel ML:

K(z,2') = [(0"U (2" U (2)|0")]

Question: Can such measurements be used to build kernels for ML?
Question: What is the best way to build quantum kernels for ML?

Question: Can quantum kernels outperform classical kernels for ML?

= Quantum Machine Learning



What does outperform mean?
= quantum advantage
= kernels that can’t be simulated classically”

= kernels that describe big data better?”

= relevant in the coD limit for x”



A rigorous and robust gquantum speed-up in supervised machine learning

1,2+ 27 and Kristan Temme?-*

Yunchao Liu, Brinivasan Arunachalam,

! Department of Electrical Engineering and Computer Sciences,
University of California, Berbeley, CA 84720
2IBM Quantum, T.J. Watson Research Center, Yorktown Heights, NY 10598
Dated: December 1, 2020)

Cwver the past few years several quantum machine learning algorithms were proposed that
promise gquantum speed-ups over their classical counterparts. Most of these learning algo-
rithms either assume quantum access to data — making it unclear if quantum speed-ups still
exist without making these strong assumptions, or are heuristic in nature with no provable
advantage over classical algorithms. In this paper, we establish a rigorous quantum speesd-up
for supervised classification using a general-purpose quantum learning algorithm that only
requires classical access to data. Our gquantum classifier is a conventional support vector
machine that nses a fanlt-tolerant gquantum computer to estimate a kernel function. Data
samples are mapped to a quantum feature space and the kernel entries can be estimated
as the transition amplitude of a guantum ecirenit, We construct a family of datasets and
show that no classical learner can classify the data inverse-polynomially better than random
guessing, assuming the widely-believed hardness of the discrete logarithm problem. Mean-
while, the gquantum classifier achieves high accuracy and is robust against additive errors in
the kernel entries that arise from finite sampling statistics.



The Inductive Bias of Quantum Kernels

Jonas M. Kiibler” Simon Buchholz®  Bernhard Schilkopt
Max Planck Institute for Intelligent Systems
Tiibingen., Germany
{jmkuebler, sbuchholz, bsl}@tue.mpg.de

June 5, 2021

Abstract

It has been hypothesized that gquantum computers may lend themselves well to applications
in machine learning. In the present work, we analvee [unction classes delined via guantuemn
kernels, Quantum computers offer the peossibility to efliciently compute inner products of
exponentially large density operators that are classically hard to compute. Howewver, having
an exponentially large leature space renders the problem of generalization hard, Furthermore,
being able to evaluate inner products in high dimensional spaces elliciently by fsell does not
puarantee a quantum advantage, as already classically tractable kernels can correspond to
high- or infinite-dimensional reproducing kernel Hilbert spaces (RKHS).

We analyvee the spectral properties of guantum kernels and find that we can expect
an advantage if their RKHS is low dimensional and contains [unctions Lthat are hard to
compute classically, Il the target function is known to lie in this class, this implies 2 guanium
advantage, as the quantum computer can encode this snductere bias, whereas there is no
classically eflicient way to constrain the function class in the same way. However, we show
that finding suitable guantum kernels is not easy because the kernel evaluation might require
exponentially many measurements.

In conclusion, our message is a somewhat sobering one: we conjecture that gquantum
maching learning models can ofler speed-ups only if we manage to encode knowledge about
the problem at hand into guantum circuits, while encoding the same bias into a classical
model would be hard. These situations may plausibly occur when learning on data generated
by a quantum process, however, they appear to be harder to come by [or classical datasets,



What does outperform mean?
= quantum advantage
= kernels that can’t be simulated classically?
= kernels that describe big data better?”
= relevant in the coD limit for a?
Perhaps, there is no practical quantum advantage to present-day QML
= better inference
Building good kernels is not trivial
Quantum kernels offer an alternative to classical kernels

What if we think about this as just another way to do classical ML?



What does outperform mean?
What if we think about this as just another way to do classical ML?

Can quantum kernels offer better inference for practical problems with
finite-dimensional x?

What does better inference mean?

= More accurate predictions with the same (small) number of
training points

= (Goal: find the best kernels for each small-data problem

Question: Can QC be used to build useful kernels for ML?

Question: What is the best way to build quantum kernels for ML?



... How does Quantum Machine Learning work in practice?



Embedding input space into a quantum computer

We said before, let’'s embed the input features into quantum states:

T — [P(z))

How is this done in practice?

The quantum states are produced by gates acting on qubits:

LU U Uy _——_— Y —
15 15 13 13

B

I
£ZT Z79 Z7W £
c

=4

L0 L L £
w ~ = a
I 2 = I

I
5 0B

Gates:

1
Ry(\) = (O 6(3)\) Simplest embedding: A\ =z



Embedding input space into a quantum computer

1
Ry(\) = (O 68>\> Simplest embedding: A =z

Need as many qubits as the number of input dimensions, one qubit
per dimension
One possible Strategy:

= Embed using R7(\)

= Entangle using CNOTs:
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Embedding input space into a quantum computer

Another Strategy:

= Embed using a combination of one- and two-qubit gates

Rgzz(Nj) =
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Regression: a 6D PES for molecule H3O™ — work of Jun Dai at UBC
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Regression: a 6D PES for molecule H3O™ — work of Jun Dai at UBC
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Regression: a 6D PES for molecule H3O™ — work of Jun Dai at UBC
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Regression: a 6D PES for molecule H3O™ — work of Jun Dai at UBC
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Regression: a 6D PES for molecule H3O™ — work of Jun Dai at UBC
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What is the best way to build quantum kernels for ML?
= work of Elham Torabian at UBC

Does the architecture of a quantum circuit matter?

= work of Elham Torabian at UBC



Classification problem — are perovskites metals?

= work of Elham Torabian at UBC

Perovskites are compounds that have the crystal structure of CaTiO3

XIIA2+VIB4+X32—

Tf A_i_r A_M_B_electronegativity A_e_affinity AIP_O B1_i_r B1_M_B_electronegativity B1_e_affinity B1_IP_2 B2_ir ..
0.93754783 1.64 0.8 0.50147 4.34066 0.92 0.9 0.618049 5.39172 0.9
0.873004911 1.88 0.77 0.471626 3.8939 1.64 0.8 0.50147 4.34066 0.9
0.962801644 1.72 0.8 0.48592 417713 0.92 0.9 0.618049 5.39172 0.9
0.97114781 1.64 0.8 0.50147 4.34066 0.92 0.9 0.618049 5.39172 0.745
0.94602682 1.72 0.8 0.48592 417713 0.77 1.08 1.235 7.72638 0.69
0.922000013 1.64 0.8 0.50147 4.34066 0.77 1.08 1.235 7.72638 0.72
0.92672015 1.64 0.8 0.50147 4.34066 0.77 1.08 1.235 7.72638 0.69
0.805877252 1.39 0.89 0.547926 5.13908 1.28 1.07 1.302 7.5762 0.62

0.829579524 1.39 0.89 0.547926 5.13908 1.14 1.49 0 10.4375 0.58

output_label
1
1

1



Quantum SVM — not all quantum circuits are created equal...

= work of Elham Torabian at UBC

A good circuit in term of average accuracy
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The corresponding accuracies:

Circuit design Accuracy of class one Accuracy of class zero  Average accuracy
The good circuit 0.72 0.92 0.82
The bad circuit 0.64 0.54 0.59




Quantum SVM — not all quantum circuits are created equal...

= work of Elham Torabian at UBC
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