
Interplay of Machine Learning and Quantum Theory

Roman Krems

University of British Columbia, Vancouver, Canada

Chemistry

Machine
Learning

Quantum
Physics

https://www.chem.ubc.ca/roman-krems

August 24, 2021

We will discuss the following:

Part I:

n n ◦ Hilbert Spaces
n n ◦ Reproducing Kernel Hilbert Spaces (RKHS)
n n ◦ Solving regularization problems with RKHS
n n n n kernel SVM
n n n n kernel ridge regression
n n n n Gaussian process regression

Part II:

n n ◦ Bayesian optimization for inverse quantum problems
n n ◦ Model selection metrics
n n n n Validation error, CP , AIK, BIC
n n ◦ How to design the best kernel?
n n ◦ Accelerating Bayesian optimization by kernel improvement

Part III:

n n ◦ Gaussian process regression for building accurate PES for
large molecules
n n ◦ Extrapolation of observables with Gaussian processes
n n ◦ Quantum machine learning
n n ◦ How to build the best quantum kernels

Part I

Submit questions about Part I by the end of the day to
n n n n n n n rkrems@chem.ubc.ca
I will do my best to address these questions tomorrow

Preliminaries...

Regression:
Classification:

Model Model

Machine Learning

Machine Learning

The reality is (most often) non-linear

... but it can be made linear...

The change x→ Φ(x) with Φ(x) = x sin(x), transforms

into

Performing regression

and transforming back, yields:

If only we knew Φ(x) for every problem ...

Some ML methods (e.g., Neural Networks) aim to determine Φ(x)

Others (e.g., kernel methods) bypass this problem ...

... by using the kernel trick ⇐ thanks to Hilbert

Kernel trick:

⇒ Avoids the need to determine Φ(x) explicitly
⇒ Writes all models in terms of inner products 〈Φ(x),Φ(x′)〉H

What do we call a kernel?

What do we call a kernel?

In general, kernels are weights, whether in a sum or an integral.

For example,...

g(x) =

n∑
i=1

K(x, xi)y(xi)

g(x) =

∫ b

a
K(x, y)f (y)dy

Pay attention to these examples... they will be useful for us today

g(x) =

n∑
i=1

K(x, xi)y(xi)

If y(xi) is an observation at xi, then

f̂ (x) =

n∑
i=1

K(x, xi) · {Observation at xi}

is a kernel smoother.

Let’s take a look at this in a little more detail...

The simplest imaginable ML
model:

f̂ =
1

n

n∑
i

yi

The simplest imaginable ML
model:

f̂ =
1

n

n∑
i

yi

Let’s take smaller chunks
of data (e.g. 10 points at a
time) and average:

f̂ (x) =
1

10

10∑
i=1

yi

for i sampling points

in bin ∆j with x ∈ ∆j

and j = 1, . . . , n/10− 1

Moving average:

We can perform such aver-
aging for every point in x:

f̂ (x) =

n∑
i=1

hi(x)yi

hi(x) =

{
1
10 for 10 points near x

0 otherwise

We will now replace hi(x) with smooth functions of x.

We will use functions that depend only on the distance from point xi,
i.e. hi(x)⇒ ϕ(|x− xi|).

Such functions are called radial basis functions (RBF).

We will use renormalized Gaussian functions for RBF.

If hi(x) are replaced with smooth functions, such as

hi(x) = k(xi, x)/A(x) with A(x) =

n∑
i=1

k(xi, x)

k(xi, x) =
1√
2πl

e−(x−xi)2/2l ← Gaussian functions

then

f̂ (x) =

n∑
i=1

hi(x)yi

becomes smooth:

n n n n

The last plot is simply the sum over yi with weights given by the
corresponding Radial Basis Functions.

The renormalized RBFs look like this:

To evaluate the model at x∗, we sum over yi multiplied by the value
of the corresponding RBF.

f̂ (x) =

n∑
i=1

hi(x)yi =

n∑
i=1

K(x, xi)yi

n n n n

Remember this simple equation... we’ll come back to it later..

Another example – integral transforms:

g(x) =

∫ b

a
K(x, y)f (y)dy

where K(x, y) is the nucleus – or kernel – of the integral transform.

In path-integral formulation of quantum mechanics:

ψ(x, t) =

∫ ∞
−∞

K(x, t;x′, t′)ψ(x′, t′)dx′

where the kernel is given by the Green’s function of the Schrödinger
equation.

n n n n n n n n ...back to Hilbert...

Hilbert showed that the integrals over two real-valued, square-integrable
functions

inner product → 〈f, g〉 =

∫ b

a
f (x)g(x)dx

have the same properties as a scalar product of two vectors in a Eu-
clidean space.

For orthogonal functions, this means:

〈f, g〉 = 0

Why is this important?

The scalar product in a Euclidean space can be used to define the
angle between two vectors:

cos θ =
a · b
|a||b|

So the scalar product determines the relationship between a and b.

Hilbert’s inner products can be used to define the relationship between
f (x) and g(x)

This can be used to define a Hilbert space.

What is a space?

A space is a set of elements with some rule(s) that provides the rela-
tionship between the elements

Hilbert’s inner products provide the rule for a set of functions giving
rise to a Hilbert space

Consider an integral transform:

f (x) =

∫ b

a
K(x, y)f (y)dy

with the kernel K(x, y) that is symmetric in x and y.

Hilbert’s discovery implies that the kernel can be written as

K(x, y) =

∞∑
n=1

λnφn(x)φn(y)

where φn(x) are orthogonal functions.

If φn(x) are ortho-normal, λn = 1.

To see this, consider f (y) = φk(y):

∫ b

a
K(x, y)f (y)dy =

∑
n

λnφn(x)

∫ b

a
φn(y)φk(y)dy = λkφk(x)

For an arbitrary f (y):

∫ b

a
K(x, y)f (y)dy =

∑
n

λnφn(x)

∫ b

a
φn(y)f (y)dy =

=
∑
n

λnanφn(x) = f (x)

The final equality holds provided λn = 1 ∀ n.

Thus, we have

K(x, y) =

∞∑
n=1

φn(x)φn(y)

This is a very special function.. why?

Let’s index it by x and view it as a function of y:

Kx(y) =
∑
n

ax,nφn(y)

Viewed this way Kx is a vector in the Hilbert space with φn as axes.

At the same time, we began with:

f (x) =

∫ b

a
K(x, y)f (y)dy = 〈f,Kx〉

Thus, any function in this space can be written as

f (x) = 〈f,Kx〉

and Kx is called the reproducing kernel of this Hilbert space

... because it reproduces any function in this space by the inner prod-
uct above

K(x, y) is the kernel function that defines a reproducing kernel Hilbert
space

Reproducing kernel Hilbert space = RKHS

Thus, any function can be written as

f (x) = 〈f,Kx〉

What if f (x) = Ky(x)?

Thus, any function can be written as

f (x) = 〈f,Kx〉

What if f (x) = Ky(x)?

Ky(x) = 〈Ky, Kx〉
or

K(x, y) = 〈Ky, Kx〉

Thus, the kernel function is an inner product of Kx and Ky!

A brief summary of the above:

• A Hilbert space is defined by its elements and an inner product.

inner product → 〈f, g〉 =

∫ b

a
f (x)g(x)dx → L2 Hilbert space

• The kernel function K(x, y) defines a unique RKHS and vice versa.

n n n n ⇒ Moore – Aronszajn theorem

• Because K(x, y) is an inner product, it must be a positive definite
function.

Question:

• Can any positive definite function K : χ × χ → R be a kernel
function?

Yes, if the inner product is appropriately redefined.

The inner product from above can be written as

〈f, g〉 =

∫ b

a
f (x)g(x)dx =

∞∑
n=1

〈f, φn〉〈g, φn〉

Now, consider an arbitrary, positive-definite function K(x, y) with the
eigenvalue equation:∫ b

a
K(x, y)φn(y)dy = λnφn(x) with λn ≥ 0

The function K(x, y) can still be written as

K(x, y) =

∞∑
n=1

λnφn(x)φn(y)

but λn are no longer equal to 1.

Is Kx(y) := K(x, y) still a reproducing kernel?

The answer is yes, if we redefine the inner product of the Hilbert space
as

〈f, g〉H =

∞∑
n=1

〈f, φn〉〈g, φn〉
λn

In this case,

〈f,Kx〉H =

∞∑
n=1

〈f, φn〉〈Kx, φn〉
λn

=
∑
n

〈f, φn〉φn(x) = f (x)

Thus, a choice of a real, positive definite function K(x, y) defines the
RKHS by defining the basis and the inner product of the Hilbert space
through the eigenvalue equation:

∫ b

a
K(x, y)φn(y)dy = λnφn(x) with λn ≥ 0

How is this all related to machine learning?

Remember our feature map:

x→ Φ(x)

We will define the feature map Φ so that

〈Φ(x),Φ(x′)〉 = K(x,x′)

is a kernel function for a Hilbert space, in which our data are linear
(or linearly separable).

What does this give us?

Regularization problems

Regularization

n n
Which model?

How to chose the better one?

Figure source: By Nicoguaro – Own work, CC BY 4.0,

https://commons.wikimedia.org/w/index.php?curid=46259145

How do we train a ML model?

In general we want to minimize the distance between the data and
the fit.

An obvious choice is to minimize this:

n∑
i

(yi − f (xi))
2 where yi are observations

But is this a good choice?

Imagine replacing linear functions in the model xTβ with some other
functions of arbitrary complexity:

xi→ ϕ(xi) = [ϕ1(xi), ϕ2(xi), · · · , ϕN (xi)]
T

If no bounds are placed on the complexity of the functions ϕi, mini-
mization of

Loss function =

n∑
i

(
yi −ϕ(xi)

Tβ
)2

will lead to zero loss function.

The model will fit the noise, which is overfitting.

Regularization (aims to) prevents this.

Without regularization

n n

With regularization

How to regularize ML models?

Loss =

n∑
i

(yi − f (xi))
2 + λ〈f, f〉H ← Tikhonov regularization

This particular regularization is used in ridge regression

How do we find the function f (x) that minimizes this loss function?

We already know we can write this function (as any function in this
Hilbert space) as

f (x) =

∞∑
m=1

amK(x,xm)

But this sum extends to infinity, so it’s not very useful...

How do we find the function f (x) that minimizes this loss function?

We already know we can write this function (as any function in this
Hilbert space) as

f (x) =

∞∑
m=1

amK(x,xm)

But this sum extends to infinity, so it’s not very useful...

However, if we are interested in a specific function f (x) that minimizes
the loss function on the previous page, we can write

f (x) =

n∑
m=1

αmK(x,xm)

where the sum runs over the finite number of training points.

(This result is one of what is known as the Representer Theorems)

Let me remind you that the ML problem minimizes

n∑
i

(yi − f (xi))
2 + λ〈f, f〉H

and

〈f, g〉H =

∞∑
n=1

〈f, φn〉〈g, φn〉
λn

where λi are the eigenvalues of the kernel.

What if some of the eigenvalues λn are zero?

(This will be important for quantum machine learning .. stay tuned)

Note that we now have two Hilbert spaces: the L2 and RKHS.

The basis states φi are orthonormal in L2.

The basis states φi corresponding to λi 6= 0 span the RKHS.

Consider a function

f (x) =

∞∑
i=1

aiφi(x)

In L2, it has the norm:

||f || =
∞∑
i=1

|ai|2

In RKHS, it has the norm:

||f ||H =

dim of RKHS∑
i=1

|ai|2/λi

If the function f (x) is in RKHS, the decomposition

f (x) =

∞∑
i=1

aiφi(x)

will only have non-zero coefficients ai that correspond to non-zero λi

If (a part of) the function is not in RKHS, that part of it cannot be
learned using kernel regression.

Another way to look at it:

Machine learning problems solve regularization problems.

Kernel ridge regression regularizes the norm ||f ||H in RKHS, i.e. the
cost function is

n∑
i

(yi − f (xi))
2 + λ||f ||2H

Imagine now that some of the kernel eigenvalues λi are zero.

The corresponding terms in the norm will be infinitely large so the
corresponding ai cannot be learned.

The larger the eigenvalues λi, the easier it is to learn the corresponding
ai.

The essential part of building a ML model is to find the right kernel
function K(x,x′).

How is this typically done?

One starts by assuming some functional form for the kernel function.

A few popular choices of the kernel function include:

Polynomial: k(x,x′) =
[
1 + 〈x,x′〉

]d
,

Radial basis: k(x,x′) = exp
[
−γ(x− x′)2

]
,

Neural network: k(x,x′) = tanh
[
a1〈x,x′〉 + a2

]
,

These functions are parameterized by a few parameters, such as d, or
a1 and a2, or γ, or α and l in the examples above.

Having chosen a particular functional form of the kernel function, one
varies these parameters to find the best model.

A few examples ...

Kernel Ridge regression

The functional to minimize
n∑
i

(yi − f (xi))
2 + λ||f ||2Hilbert space

is equivalent to that in ridge regression, except that the model now is
in the high-(N)-dimensional Hilbert space.

Thus, we are dealing with Kernel Ridge Regression.

Because the shapes of the functions f (x) can, in principle, be arbi-
trary, Kernel Ridge Regression is capable of building arbitrary models,
not just linear models.

To build the model, we start by defining the kernel function K(x,x′).

Next, we need to find the equations for the coefficients αj in

f (x) =

n∑
j=1

αjK(x,xj)

The square-of-the-differences term can be written in matrix form as
n∑
i

(yi − f (xi))
2 = (y −Kα) T (y −Kα)

The regularization term can be written in matrix form as

λ||f ||2 = λαTKα

and the solution for α is

α̂ = [K + λI]−1 y

The matrix K is a square n × n matrix with elements K(xi,xj),
where xi and xj are the training points.

Given α̂, we can write the estimator of the model at point x∗

f̂ (x∗) = kT(x∗)α =

= kT(x∗) [K + λI]−1 y

where

k(x∗) =


K(x∗,x1)
K(x∗,x2)
K(x∗,x3)

...
K(x∗,xn)



We can see that the model is written in terms of:

⇒ The vector of observations y;

⇒ The square matrix K, whose elements are the kernel functions
K(xi,xj);

⇒ The column vector k(x∗), whose elements are the kernel functions
K(x∗,xj).

Thus, the problem boils down to finding the kernel func-
tion K(x,x′).

How is this done?

We start by assuming some function form for the kernel function.

A few popular choices of the kernel function include:

Polynomial: K(x,x′) =
[
1 + 〈x,x′〉

]d
,

Radial basis: K(x,x′) = exp
[
−γ(x− x′)2

]
,

Neural network: K(x,x′) = tanh
[
a1〈x,x′〉 + a2

]
,

Rational Quadratic: K(x,x′) =

(
1 +
|xi − xj|

2αl2

)−α
,

These functions are parameterized by a few parameters, such as d, or
a1 and a2, or γ, or α and l in the examples above.

Having chosen a particular functional form of the kernel function, one
varies these parameters to minimize the validation error.

For Kernel Ridge Regression, this is often done through cross-validation
or by grid search.

Using kernels for classification problems

What if the data are not linearly separable, as in this one-dimensional
example:

n n n

This can be taken care of by a non-linear transformation. In particu-
lar, transforming the inputs as x→ sin(x) yields:

n n n

Introducing another feature as x2→ sin(x1) yields:

n n n

This is an example of lifting data to a higher-dimensional space to
make it separable:

⇒

In 1D, the classes are not linearly separable

In 2D, the classes are separable by the x2 = 0 line

Support Vector Machine or SVM

SVM is most commonly used to classify data that are not linearly
separable.

We will apply it to the following example of clearly non-linearly-
separable data:

Let me summarize what the figure on the previous page depicts:

n ⇒ The equation for the hyperplane is β Tx + β0 = 0

n ⇒ The shortest distance between a point x and the hyperplane

n n n is
(
β Tx + β0

)
/|β|

How does one find the coefficients β and β0 of the hyperplane?

One way to determine the optimal hyperplane is by maximizing the
distance M from the data points.

Note that we want every point to be at least the distance = M away
from the hyperplane.

Recall that the distance of point xi from the hyperplane is(
β Txi + β0

)
/|β|

So we want for each point in the dataset:

yi

(
β Txi + β0

)
/|β| ≥M

or

yi

(
β Txi + β0

)
≥M |β|

Note that if we scale each of the β coefficients by the same factor, the
(in)equality

yi

(
β Txi + β0

)
≥M |β|

is preserved.

Therefore, we can arbitrarily rescale β and β0 to have

|β| = 1/M,

which will lead us to the condition:

yi

(
β Txi + β0

)
≥ 1

for every point in the data set.

So, to find the optimal hyperplane, we want to minimize |β|, while

ensuring yi

(
β Txi + β0

)
≥ 1 for every data point.

Use: https://en.wikipedia.org/wiki/Lagrange multiplier

We can do this by minimizing the following (Lagrange) function:

L =
1

2
|β|2 −

n∑
i

αi

[
yi

(
β Txi + β0

)
− 1
]

where αi are chosen such that

αi

[
yi

(
β Txi + β0

)
− 1
]

= 0 for each i

Let’s take the derivative of L and set it to zero:

β =

n∑
i

αiyixi

0 =

n∑
i

αiyi

We can see that the coefficients β are given by the Lagrange multi-
pliers αi, which can be found numerically.

One way to find the Lagrange multipliers is by restricting αi to be
positive.

If we then substitute the equations on the previous page into L, we
will get

LD =
∑
i

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj subject to αi ≥ 0

It can be shown that LD provides the lower bound for L.

The minimum of L can therefore be found by maximizing LD.

If interested, check this https://en.wikipedia.org/wiki/Wolfe duality

Note that the condition

αi

[
yi

(
β Txi + β0

)
− 1
]

= 0 for each i

implies the following:

⇒ If αi > 0, then
[
yi

(
β Txi + β0

)
− 1
]

= 0, which means the point

xi lies on the boundary of the margin slab.

⇒ If
[
yi

(
β Txi + β0

)
− 1
]
> 0, the points is outside the margin and

αi = 0.

Therefore, the final model coefficients

β =

n∑
i

αiyixi

are given in terms of the points xi that lie on the boundary of the
slab.

These points are the support points.

Support Vector Machine (SVM)

We will now consider the case of classes that are not linearly separable.

To do this, we must first allow some points to be on the wrong side
of the margin, as in his plot:

Previously, our condition was

yi

(
β Txi + β0

)
≥ 1

Now we have to require that

yi

(
β Txi + β0

)
≥ 1− ξi

where ξi = 0 if the point is on the right side of the margin.

As before, we want to maximize the margin (or minimize |β|), but let
us now add another constraint:∑
i

ξi < C = const ← this will add a cost term to the L function

The Lagrange function will be

L =
1

2
|β|2 −

n∑
i

αi

[
yi

(
β Txi + β0

)
− (1− ξi)

]
+ C

∑
i

ξi −
∑
i

µiξi

This optimization problem has the following conditions:

µiξi = 0,

αi

[
yi

(
β Txi + β0

)
− (1− ξi)

]
= 0,[

yi

(
β Txi + β0

)
− (1− ξi)

]
≥ 0

The goal is to find the minimum of L by varying β, β0 and ξi.

By setting the corresponding derivatives of L to zero, we get:

β =

n∑
i

αiyixi

0 =

n∑
i

αiyi

αi = C − µi for all i.

By replacing these back into the equation for L, we get:

LD =
∑
i

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj subject to αi ≥ 0

Again, LD provides the lower bound for L.

The minimum of L can therefore be found by maximizing LD.

So, we need to maximize

LD =
∑
i

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

or

LD =
∑
i

αi −
1

2

n∑
i=1

n∑
i=1

αiαjyiyj〈xi,xj〉

To deal with non-linearities, we will now introduce feature map:

xi⇒ Φ(xi)

which gives us

LD =
∑
i

αi −
1

2

n∑
i=1

n∑
i=1

αiαjyiyj〈Φ(xi),Φ(xj)〉

But, remember,

〈Φ(xi),Φ(xj)〉 = K(xi,xj) is the kernel function

So we can write LD as

LD =
∑
i

αi −
1

2

n∑
i=1

n∑
i=1

αiαjyiyjK(xi,xj)

which can be maximized numerically to find the coefficients αi and
the parameters of the kernel function K(xi,xj).

What is the equation for the hyperplane that separates the classes in
the high-dimensional space?

In the high-dimensional space: β =

n∑
i

αiyiϕ(xi)

f (x) = βTϕ(x) + β0 =∑
i

αiyi〈ϕ(xi), ϕ(xi)〉 + β0 =∑
i

αiyiK(xi,x) + β0

To find β0, we can use yif (xi) = 1 for any point, for which αi > 0.

Again, we see that the solution is written in terms of the sum of the
kernel functions.

Once and the kernel functions are defined and αi are found, we know
f (x).

Can we compare SVM with Ridge Regression?

Let’s take another look at the loss function we need to minimize in
order to train SVM.

We started by saying that we need to minimize |β|2 subject to the
following conditions:

yi

(
β Txi + β0

)
≥ 1− ξi with ξi ≥ 0

and ∑
i

ξi < C = const

How about we simply write

ξi ≥ 1− yi
(
β Txi + β0

)
and vary β and β0 to find the minimum of the following function:

L(β, β0) =
1

2
|β|2 + C

n∑
i

[
1− yi

(
β Txi + β0

)]
+

The problem is equivalent to minimizing the following function:

L(β, β0) =
1

2C
|β|2 +

n∑
i

[
1− yi

(
β Txi + β0

)]
+

This is equivalent to minimizing the following function:

L(β, β0) =
1

2
λ|β|2 +

n∑
i

max [0, 1− yif (xi)]

The red part is the the same as the regularization term in Ridge
regression.

The green part is called Hinge loss

Linear Ridge regression:

Minimize L(β, β0) =
1

2
λ|β|2 +

n∑
i

[yi − f (xi)]
2

SVM:

Minimize L(β, β0) =
1

2
λ|β|2 +

n∑
i

max [0, 1− yif (xi)]

For kernel SVM, a few popular choices of the kernel function include:

Polynomial: k(x,x′) =
[
1 + 〈x,x′〉

]d
,

Radial basis: k(x,x′) = exp
[
−γ(x− x′)

]
,

Neural network: k(x,x′) = tanh
[
a1〈x,x′〉 + a2

]
In the following example, we will use the following kernels:

• the polynomial kernel with d = 1 (which is equivalent to linear
classification), d = 3, d = 6 and d = 100

• the radial basis kernel, or RBF.

Here’s the data we’re classifying, dimmed:

SVM with the RBF kernel produces this for the boundaries of the
margin and the separating hyperplane:

Let’s add the support vectors (as open circles):

Here’s what we get with the linear kernel (d = 1):

Here’s what we get with the polynomial kernel (d = 3):

Here’s what we get with the polynomial kernel (d = 6):

Here’s what we get with the polynomial kernel (d = 100):

Now, since we are playing with this, let’s distort the data to make
them look strange, – will our classifier still perform?

Here’s what we get with the RBF kernel:

Gaussian Process Regression – what we will do:

Our goal is to regress data Assuming zero noise variance:

With noise variance: Including model uncertainty:

Including noise in GP is equivalent to regularization in KRR.

Take a look at the codes for Gaussian Process Regression in
gaussian-process-regression.ipynb

The code uses sklearn and TensorFlow

TensorFlow will offer more control and flexibility, e.g., sampling func-
tions directly from the posterior, as shown here:

Gaussian Process Regression

We have already learned a powerful and general regression tool: Kernel
Ridge Regression (KRR).

Why do we need another regression model?

Gaussian Process Regression does what KRR, but also allows us to
calculate:

n ⇒ Bayesian uncertainty of our predictions

As we shall see, this can be used, at least, for two powerful applica-
tions:

n ⇒ Bayesian optimization

n ⇒ Building better kernel functions

Gaussian Process

Consider the following linear regression function in an N -dimensional
space:

f (x) =
(
β0, β1, · · · , βN

)
1

ϕ1(x)
...

ϕN (x)


Each of the functions ϕi(x) is some non-linear function of x, such as,
for example:

ϕi(x) = tanh

ai p∑
j=1

xj + bi


And x is – as before – p-dimensional:

x =

x1
...
xp



The equation

f (x) =
(
β0, β1, · · · , βN

)
1

ϕ1(x)
...

ϕN (x)


depicts the following Neural Network:

n n n n

x1

x2

x3

xp

1

ϕ1(x)

ϕ2(x)

ϕ3(x)

ϕ4(x)

ϕ5(x)

ϕ6(x)

ϕN (x)

f (x)
...

...

If all of the parameters ai, bi, and β1, β1, · · · , βN are fixed, then the
NN

n n n n

x1

x2

x3

xp

1

ϕ1(x)

ϕ2(x)

ϕ3(x)

ϕ4(x)

ϕ5(x)

ϕ6(x)

ϕN (x)

f (x)
...

...

produces for each x a single value equal to f (x).

Let us now replace each of β0, β1, · · · , βp with a random variable,
each distributed according to some distribution.

Since the variables are random, each time we draw a value for β0, β1, · · · , βN
and evaluate the NN, it will produce a different, random result.

Thus, the output of the NN for a fixed x is a random variable.

The Neural Network becomes a Bayesian Neural Network.

If we plot the output f (x) of a Bayesian Neural Network as a function
of x, it will be something like this:

where each curve corresponds to a different combination of β0, β1, · · · , βN .

How do we use a Bayesian NN to model data?

One way is to select only the functions that go through our data points
and discard all other functions.

We want to go from this:

To this:

In principle, this can be done by sampling functions from the original
distributions. But not in practice. There are just too many functions.

Perhaps, the Bayes’ theorem can help us?

Let’s denote a function corresponding to a specific combination of all
parameters of the NN collectively by θ

θ ⇒ NN (ai, bi, β0, β1, · · · , βN) , where i = 1, N

The output of the NN is a distribution of such function, which we can
call p(θ).

Our goal is to find the functions θ that give a good description of the
data: {X,y}.

Let’s set the notation straight:

p(θ|X) is the unconditional distribution of the NN outputs

at the locations of the input space given by X

p(θ|X,y) is the conditional distribution of the NN outputs

at the locations of the input space given by X

conditioned by the observations y

We want to condition our distribution:

p(θ|X)⇒ p(θ| {X,y})

The Bayes’ theorem gives us this conditional distribution:

p(θ| {X,y}) =
p(y|θ,X)p(θ|X)

p(y|X)

This helps.. but not much.

Even if we could calculate p(θ| {X,y}), how would we use it to make
predictions?

Our ultimate goal is to make a prediction of y∗ at some point x∗.

We can write an equation for the distribution:

p(y∗|x∗, {X,y}) =

∫
θ
p(y∗|x∗, θ)p(θ| {X,y})dθ

and use the LHS to predict the most probable value of y∗.

BUT... look at the integral on the RHS. How many parameters de-
termine θ?

There are N + 1 βi and then there are 2N of ai and bi, which is a
total of 3N + 1. With N = 20 (a modest NN), we need to evaluate
61-dimensional integrals in the equation above .. Yikes!

And this is where Gaussian Processes help!

Let’s increase the size of the NN by making N →∞.

If each of the inputs into the output (red) neuron in the NN

n n n n

x1

x2

x3

xp

1

ϕ1(x)

ϕ2(x)

ϕ3(x)

ϕ4(x)

ϕ5(x)

ϕ6(x)

ϕN (x)

f (x)
...

...

are independent random variables and N →∞, what is the distribu-
tion of the output values for fixed x?

The central limit theorem says this distribution will be Gaussian.

This distribution must remain Gaussian for all x.

Thus, f (x) is a Gaussian process.

This helps a lot because the integrals on the previous page can be
dealt with analytically!

Let’s see how.

Our goal is to infer a function that describes the data:

Data = f (x)+ε, where the noise is usually Gaussian-distributed (with
zero mean and some variance σ2):

ε ∼ N (0, σ2)

Let’s first consider a linear model:

f (x) = β Tx.

Recall that, given a single observation yi at xi, the model likelihood
is defined as equal to p(yi|β,xi).

We will assume that each data point is independent.

Then, for n observations y at positions in the data matrix X, the
likelihood is

p(y|β,X) =

n∏
i=1

p(yi|β,xi)

Because the function f (x) differs from the data by Gaussian noise,
we can write

p(yi|β,xi) =
1√
2πσ

exp

[
−(yi − β Txi)

2

2σ2

]

Thus, the model likelihood, given the data y, is a product of Gaus-
sians.

We can write the likelihood explicitly:

p(y|β,X) =

n∏
i=1

p(yi|β,xi) =
1

(2πσ2)
n/2

exp

[
−|y −Xβ|2

2σ2

]

Our goal is to use the Bayes’ theorem to calculate the posterior:

p(β|y,X) =
p(y|β,X)p(β)

p(y|X)

Note that p(y|X) is just a normalization constant that does not de-
pend on β.

As always, we have freedom in the choice of the prior (as long as our
choice is reasonable), so we choose it as:

p(β) ∼ N (0,Σp)

which is a joint normal distribution with zero mean and co-variance
matrix Σp.

We have:

p(β|y,X) =
p(y|β,X)p(β)

p(y|X)
=

1

A
exp

[
−|y −Xβ|2

2σ2

]
exp
[
−β TΣ−1

p β
]

where we put all constant terms into the constant A.

The last equation can be written as

p(β|y,X) =
1

A
exp

[
− 1

2σ2
(y −Xβ) T(y −Xβ)

]
exp
[
−β TΣ−1

p β
]

which can be further re-written as

p(β|y,X) =
1

A
exp

[
−1

2
(β − µ)TC(β − µ)

]
where

µ = σ−2
[
σ−2X TX + Σ−1

p

]−1
XTy mean of the posterior

and

C−1 =
[
σ−2X TX + Σ−1

p

]−1
covariance matrix

So we have the conditional distribution of the model parameters p(β|y,X)
given the data y,X.

Again, it is a normal distribution with

mean µ = σ−2C−1X Ty and covariance matrix C−1

Now, we need to multiply this by p(y∗|x∗,β) and integrate over β to
obtain

p(y∗|x∗) =

∫
β
p(y∗|x∗,β)p(β|y,X)

p(y∗|x∗) =

∫
β

exp

[
−(y∗ − β Tx∗)2

2σ2

]
exp

[
−1

2
(β − µ)TC(β − µ)

]
dβ

It’s easy to see that this distribution is going to be Gaussian:

p(y∗|x∗) ∝ exp

[
−(y∗ − µ̂)2

2σ̂2

]

It’s easy to see that this distribution is going to be Gaussian:

p(y∗|x∗) ∝ exp

[
−(y∗ − µ̂)2

2σ̂2

]

The means and the variance of this final distribution can be found by
expanding the terms in the integral to be:

µ̂ = x∗Tµ = x∗Tσ−2C−1X Ty

σ̂2 = x∗TC−1x∗ with C =
[
σ−2X TX + Σ−1

p

]
These are the conditional mean and variance.

The mean can be used to make predictions.

Let’s compare this with what we have for linear regression and ridge
regression.

Linear regression:

x∗Tβ̂ = x∗T
(
X TX

)−1
X Ty

Linear Ridge regression:

x∗Tβ̂ = x∗T
(
X TX + λnI

)−1
X Ty

Linear Gaussian process regression:

µ̂ = x∗Tσ−2
[
σ−2X TX + Σ−1

p

]−1
X Ty

In order to describe non-linear data, we introduce feature map:

x→ ϕ⇒ vector in the high-dimensional space

X→ Φ

X T→ Φ T

Then, we have

µ̂ = ϕ∗Tµ = ϕ∗Tσ−2C−1Φ Ty

σ̂2 = ϕ∗TC−1ϕ∗ with C =
[
σ−2Φ TΦ + Σ−1

p

]
Let us now write

C = σ−2
[
Φ TΦΣp + σ2I

]
Σ−1
p

CΣpΦ
T = σ−2Φ T

[
ΦΣpΦ

T + σ2I
]

C−1CΣpΦ
T = ΣpΦ

T = σ−2C−1Φ T
[
ΦΣpΦ

T + σ2I
]

C−1Φ T = σ2ΣpΦ
T
[
ΦΣpΦ

T + σ2I
]−1

This gives:

µ̂ = ϕ∗TΣpΦ
T
[
ΦΣpΦ

T + σ2I
]−1

y

For variance, we will use the so-called Woodbury formula

(E + FGH)−1 = E−1 − E−1F
(
G−1 + HE−1F

)−1
HE−1

applied to

C−1 =
[
σ−2Φ TΦ + Σ−1

p

]−1

Replacing:

E→ Σp
−1 G−1→ Iσ2 F→ Φ T H→ Φ

we get

C−1 = Σp −ΣpΦ T
[
Iσ2 + ΦΣpΦ

T
]−1

ΦΣp

Remember the variance is

σ̂2 = ϕ∗TC−1ϕ∗

We thus have:

µ̂ = ϕ∗TΣpΦ
T
[
ΦΣpΦ

T + σ2I
]−1

y

σ̂2 = ϕ∗TΣpϕ
∗ −ϕ∗TΣpΦ

T
[
ΦΣpΦ

T + σ2I
]−1

ΦΣpϕ
∗

Notice that everything is written in terms of ΦΣpΦ
T or ϕ∗TΣpϕ

∗

or ΦΣpϕ
∗.

Remember also that Σp is the covariance matrix of the prior, which
we have some freedom to choose.

To simplify matters, let’s choose it to be Σp = I.

Then, we get:

µ̂ = ϕ∗TΦ T
[
ΦΦ T + σ2I

]−1
y

σ̂2 = ϕ∗Tϕ∗ −ϕ∗TΦ T
[
ΦΦ T + σ2I

]−1
Φϕ∗

Look closely at these equations:

ϕ∗Tϕ∗ = k(x∗,x∗) is the kernel function at (x∗,x∗)
Φϕ = k(x∗) is a vector of kernel functions K(xi,x

∗)

ΦΦ T = K is a matrix of kernel functions K(xi,xj)

With this in mind we can write:

µ̂ = kT(x∗)
[
K + σ2I

]−1
y

σ̂2 = k(x∗,x∗)− kT(x∗)
[
K + σ2I

]−1
k(x∗)

We see that everything is determined by the kernel functionsK(x,x′).

You might ask if the choice of Σp = I is justified?

I will say: It doesn’t matter. If the prior co-variance matrix is not
identity, I can redefine the kernels, as follows:

ϕ∗TΣpϕ
∗ = K(x∗,x∗) is the kernel function at (x∗,x∗)

ΦΣpϕ = k(x∗) is a vector of kernel functions K(x∗,xi)

ΦΣpΦ
T = K is a matrix of kernel functions K(xi,xj)

We can do this, because

n ⇒ Σp is just a constant matrix.

n ⇒ Σp is positive definite (since it is a co-variance matrix).

Final results for Gaussian Process regression:

Mean of the predictive distribution to be used as the prediction of the
model:

µ̂ = kT(x∗)
[
K + σ2I

]−1
y

Conditional variance to be used as Bayesian uncertainty:

σ̂2 = k(x∗,x∗)− kT(x∗)
[
K + σ2I

]−1
k(x∗)

Compare this with what we obtained for Kernel Ridge Regression:

f̂ (x∗) = kT(x∗)α =

= kT(x∗) [K + λI]−1 y

How are Gaussian Processes trained?

• As before, one starts by choosing a function for K(x,x′).

• The parameters of this function are then varied to maximize p(y|X).

• Recall p(y|X).. This is the term in the denominator of the Bayes’
theorem:

p(y|X) =

∫
θ
p(y|θ,X)p(θ|X)dθ

This multiplies the model likelihood p(y|θ,X) by p(θ|X) and inte-
grates over all random function values.

When we integrate over a random variable as θ above, we are ‘marginal-
izing’ this variable.

The likelihood integrated as above is thus called ‘marginal likelihood’.

Marginal likelihood

Marginal likelihood for a Gaussian process can be expressed in terms
of kernels. – How?

To answer this questions, let’s consider again the prior p(θ|X).

I remind you that

n θ represents functions drawn from a Gaussian process

p(θ|X) is the unconditional distribution of the NN outputs

at the locations of the input space given by X

Because the functions θ are drawn from a Gaussian process, p(θ|X)
is a multi-variate Gaussian.

This means that p(θ|xi) and p(θ|xj) are both Gaussian with some
covariance Cov(xi,xj) between them.

We will choose the covariance of the Gaussian Process prior to be the
kernel function:

Cov(x,x′) = K(x,x′)

This is actually equivalent to the choice of the prior we had previously
made:

p(β) ∼ N (0,Σp)

To see this, consider

f (x) = βTϕ(x)

Then:

E[f (x)] = ϕ(x) TE[β] = 0 and

Cov(x,x′) = E[f (x)f (x′)] = ϕT(x)E[ββ T]ϕ(x′) = ϕT(x)Σpϕ(x′)

Our goal is to evaluate the marginal likelihood:

p(y|X) =

∫
θ
p(y|θ,X)p(θ|X)dθ

It is more convenient to work with the logarithm of marginal likeli-
hood.

Given that the prior’s covariance is the kernel matrix and the inte-
grand is a product of two Gaussians, it is actually possible to write
this in terms of the kernel matrix as follows:

log p(y|X) = −1

2
y T
(
K + σ2I

)
y − 1

2
log |K + σ2I| − n

2
log 2π

The purpose of training a Gaussian process is to find the parameters of
the kernel functionK(x,x′) that maximizes the logarithm of marginal
likelihood.

End of Part I

Submit questions about Part I by the end of the day to
n n n n n n n rkrems@chem.ubc.ca

Interplay of Machine Learning and Quantum Theory

Roman Krems

University of British Columbia, Vancouver, Canada

August 26, 2021

Part II:

n n ◦ The Bayes’ theorem, likelihood
n n ◦ Bayesian optimization for inverse quantum problems
n n ◦ Model selection metrics
n n n n Bayesian Information Criterion
n n ◦ How to design the best kernel?
n n ◦ Accelerating Bayesian optimization by kernel improvement

L(β) = ||y − β Tx||22 + λ|β| ← Lasso

L(β) = ||y − β Tx||22 + λ|β|2 ← Ridge

For example, in

n n n n
The experimental variables are
n n n n n p =gas pressure, u=voltage, v=flow rate.

One could work with this 3-dimensional feature space.

However, what if these features are not the best? What if some com-
binations of these features are better for modelling reaction yields?

To determine the best features, the authors engineered new features
as: u, v, pu, pv, uv, p/u, p/v, u/v, p2, u2, v2

Using these new features as variables, they trained 11-dimensional
linear regression and looked at the three main variables determining
the variation of their output. The result was p/v, u/v, p2.

We will need two important concepts for today’s discussion:

n n n n The Bayes’ theorem
n n n n Likelihood

Bayes’ theorem

• Bayes’ theorem is the basis of Bayesian inference.

• It shows how a degree of belief must be modified to account for
evidence.

• Bayes’ theorem operates with probabilities or probability densities.

• Therefore, the degree of belief must be expressed as a probability.

First, some basic definitions:

n

P (X) is a probability if X is a discrete variable (e.g., heads or tails)

P (X|Y) is a conditional probability – i.e. probability of X given Y .

If X is continuous, we must work with the probability density.

∫ b

a
pX(x)dx is the probability that X ∈ [a, b], if X is continuous.

In this case, pX(x) is the (probability) density.

We will also encounter conditional probability density:

pX|Y =y(x) = pX(x|Y = y)

For two events A and B, Bayes’ theorem is

P (B|A) =
P (A|B)P (B)

P (A)

An event is a realization of a random discrete variable:

A = {X = x} B = {Y = y}

Example: An undergraduate student wants to calculate the probabil-
ity that she/he will get into a chemistry graduate program if she/he
gets an A in Chem121.

Rephrasing this in the language of Bayesian inference, this problem
should read something like this:

You meet a first-year undergraduate chemistry student. The student
asks you: what is the probability that I will be admitted into your
grad school?

You say: 5/100

The student says: but I just passed Chem121 and got an A.

You say: In this case, the probability is 16.7/100

How did you come up with this answer? Let’s see...

n

Define⇒ X =

{
1, if Chem121 grade ≥ A

0, otherwise

Y =

{
1, if in grad school

0, otherwise

P (Y = 1) =
number of graduate students

total number of undergraduate students

P (X = 1|Y = 1) =
number of graduate students with A in Chem121

total number of graduate students

P (X = 1) =
number of A grades in Chem121

total number of undergraduate students

For example, let’s say that 1 in 20 undergraduate students go to grad
school and that 2/3 graduate students had an A in Chem121 when
they took it. The number of A’s in Chem121 is typically 1 in 5.

The naive probability to become a graduate student is 1/20 = 5/100.

The Bayesian probability, given an A in first year Chemistry, is

P (Y = 1|X = 1) =
P (X|Y)P (Y)

P (X)
=

2/3× 1/20

1/5
= 16.7/100

For two events A and B, Bayes’ theorem is

P (B|A) =
P (A|B)P (B)

P (A)

Or, we can use A = {X = x} and B = {Y = y}, to write Bayes’
theorem for two discrete random variables X and Y as

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)

P (X = x)

If X and/or Y are continuous, replace the corresponding probabilities
with probability densities.

For example, if X is continuous,

P (X = x|Y = y)→ pX|Y =y(x) and

P (X = x)→ pX(x) are the probability density functions.

Likelihood

Likelihood = likelihood function

Let’s start by saying what likelihood is not.

Likelihood is not a probability or probability density.

Consider first the case of a discrete random variable X .

Consider a stochastic process that produces one of the values of X

Every process is usually a function of one or more parameters β.

Example: n

Stochastic process ⇒ Flip of a coin
Random variable ⇒ X ⇒ {H,T}
Parameter β: Fairness of the coin→ the outcome depends
on fairness
Define β as a continuous variable ∈ [0, 1] equal to the
probability of H

Given β thus defined, we can calculate the probability of observing
HH in two coin flips:

P (HH|β = 0) = 0

P (HH|β = 0.5) = 1/4

P (HH|β = 1) = 1

Likelihood is a function of β, given an observation.

It is defined as follows:

L(β|HH) = P (HH|β)

Why do we need likelihood?

Let’s say you have a coin, but you don’t know how fair it is: i.e. you
don’t know βcoin.

Likelihood allows you to estimate βcoin! Let’s see how..

First, note that likelihood depends on the observations!

If we flip the coin twice and get HH, L(β|HH) is the red curve below.

For three coin tosses producing HHT, likelihood is the green curve

For four producing HHTH, we get the blue curve.

n n

Since we have a particular observation, it is reasonable to assume that
βcoin corresponds to the maximum of likelihood.

For this value of β the stochastic process is the most likely to lead to
the result we observed.

n n

Notice how the result HH suggest that βcoin = 1, HHT suggests
βcoin ≈ 0.65 and HHTH suggests βcoin ≈ 0.79

If our random variable is continuous, likelihood is defined as equal to
the probability density:

L(β|X = x) = pX(x|β)

Note that on the left hand side x is not a variable, but a fixed outcome
of random variable X .

Please do not confuse likelihood with probability.

It is wrong to say that L(β|observation) is the probability that β has
some value given an observation.

A brief overview of Gaussian Processes

Gaussian Process Regression

We have already learned a powerful and general regression tool: Kernel
Ridge Regression (KRR).

Why do we need another regression model?

Gaussian Process Regression does what KRR, but also allows us to
calculate:

n ⇒ Bayesian uncertainty of our predictions

As we shall see, this can be used, at least, for two powerful applica-
tions:

n ⇒ Bayesian optimization

n ⇒ Building better kernel functions

Consider the following model:

f (x) =
(
β0, β1, · · · , βN

)



1
ϕ1(x)

...
ϕN (x)




which can be depicted as a Neural Network:

n n n n

x1

x2

x3

xp

1

ϕ1(x)

ϕ2(x)

ϕ3(x)

ϕ4(x)

ϕ5(x)

ϕ6(x)

ϕN (x)

f (x)
...

...

If all of the parameters of the NN are fixed, then the NN

n n n n

x1

x2

x3

xp

1

ϕ1(x)

ϕ2(x)

ϕ3(x)

ϕ4(x)

ϕ5(x)

ϕ6(x)

ϕN (x)

f (x)
...

...

produces for each x a single value of f (x).

Let us now replace each of β0, β1, · · · , βp with a random variable,
each distributed according to some distribution.

Since the variables are random, each time we draw a value for

β0, β1, · · · , βN
and evaluate the NN, it will produce a different, random result.

Thus, the output of the NN for a fixed x is a random variable.

If we plot the output f (x) of such a Neural Network as a function of
x, it will be something like this:

where each curve corresponds to a different combination of β0, β1, · · · , βN .

To model data,

We want to go from this:

To this:

We want to condition our distribution:

p(θ|X)⇒ p(θ| {X,y})

The Bayes’ theorem gives us this conditional distribution:

p(θ| {X,y}) =
p(y|θ,X)p(θ|X)

p(y|X)

The prediction at x∗ can be made using:

p(y∗|x∗, {X,y}) =

∫

θ
p(y∗|x∗, θ)p(θ| {X,y})dθ

Let’s increase the size of the NN by making N →∞.

If each of the inputs into the output (red) neuron in the NN

n n n n

x1

x2

x3

xp

1

ϕ1(x)

ϕ2(x)

ϕ3(x)

ϕ4(x)

ϕ5(x)

ϕ6(x)

ϕN (x)

f (x)
...

...

are independent random variables and N →∞, what is the distribu-
tion of the output values for fixed x?

The central limit theorem says this distribution will be Gaussian.

This distribution must remain Gaussian for all x.

Thus, f (x) is a Gaussian process.

This helps a lot because the integrals on the previous page can be
dealt with analytically!

µ̂(x∗) = kT(x∗)
[
K + σ2I

]−1
y

σ̂2(x∗) = k(x∗,x∗)− kT(x∗)
[
K + σ2I

]−1
k(x∗)

We see that everything is determined by the kernel functionsK(x,x′).

Final results for Gaussian Process regression:

Mean of the predictive distribution to be used as the prediction of the
model:

µ̂ = kT(x∗)
[
K + σ2I

]−1
y

Conditional variance to be used as Bayesian uncertainty:

σ̂2 = k(x∗,x∗)− kT(x∗)
[
K + σ2I

]−1
k(x∗)

Compare this with what we obtained for Kernel Ridge Regression:

f̂ (x∗) = kT(x∗)α =

= kT(x∗) [K + λI]−1 y

The prediction error in GPR can be used for Bayesian optimization

σ̂2 = k(x∗,x∗)− kT(x∗)
[
K + σ2I

]−1
k(x∗)

Optimization of expensive black-box functions

Self-driving lab

Experiment
Parameters

Target

Experiment

⇐

●

●

●

●

−2

0

2

−5.0 −2.5 0.0 2.5 5.0

Extremely efficient (requires very few function evaluations)
Very easy to implement
Requires no gradient

Bayesian optimization

Experimental parameters ⇒ x

Outcome of experiment ⇒ y

Surrogate ML model A of the experiment outcome⇒ Optimize A(x)

Many applications in Chemistry – e.g. solving inverse problems

Unknown
Theory

Parameters
Observable

Theory

H = E

Bayesian Optimization (BO)

As mentioned earlier, BO is designed to optimize black-box (e.g. un-
known) functions without gradients.

Therefore, it is particularly well suited for functions that are very
difficult to evaluate.

How does it work? BO uses Gaussian processes as surrogate models
of the black-box function.

Recall that training a Gaussian Process produces:

µ̂ = kT(x∗)
[
K + σ2I

]−1
y ⇐ prediction

σ̂2 = k(x∗,x∗)− kT(x∗)
[
K + σ2I

]−1
k(x∗) ⇐ uncertainty

BO is an iterative process.

BO starts with a few evaluations of the black box function at random
places. The evaluations are used to train a Gaussian Process.

The results of the training are used to build an acquisition function:

α(x) = µ̂(x) + κσ̂2(x)

At each iteration:

n ⇒ The acquisition function is maximized to find xmax.

n ⇒ The black-box function is evaluated at xmax.

n ⇒ The result of the evaluation is added to the training set for GP.

n ⇒ A new (more accurate) GP is trained.

n ⇒ A new acquisition function is built from the new GP.

n ⇒ A new value of xmax is determined.

This is how Bayesian Optimization works:

●

●

−2

0

2

−5.0 −2.5 0.0 2.5 5.0

●

●

−2

0

2

−5.0 −2.5 0.0 2.5 5.0

●

●

●

−2

0

2

−5.0 −2.5 0.0 2.5 5.0

●

●

●

●

−2

0

2

−5.0 −2.5 0.0 2.5 5.0

1

1

2

3

Inverse problems

Microscopic
interactions

Theory

Scattering
experiment

Inverse problems

Microscopic
interactions

Scattering
experiment

Inverse problems

Compute
PES

GP 1

GP 2

H + H2 H2 + H

Iteration 0

Iteration 1

Red curve: Iteration 8

How many potential energy points does one need to know to describe the complete surface?

Quantum scattering calculation

Black curve – using an analytic
fit of the PES based on 8700 points

Red curve – using a GP model of PES
based on 30 points

At every iteration, a completely new global surface is constructed automatically

Example of a 6D system: OH + H2 chemical reaction

BO:
Green curve

PES obtained using
290 points

Graduate student:
Black curve

PES obtained using
~17,000 points

Inferring molecular properties from time-dependent observables

Inferring molecular properties from time-dependent observables

The choice of kernel is important!

This is what happens with a poorly chosen kernel

The choice of kernel is important!

Molecular Hyperfine Interferometry

Godsi, O.; Corem, G.; Alkoby, Y.; Cantin, J. T.; Krems, R. V.; Somers, M. F.; Meyer, J.;
Kroes, G.-J.; Maniv, T.; and Alexandrowicz, G. Nature Communications 8, 1537 (2017).

Experiment

Theory

Interplay of Machine Learning and Quantum Theory

Roman Krems

University of British Columbia, Vancouver, Canada

August 26, 2021

Part III:

n n ◦ Model selection metrics
n n n n Bayesian Information Criterion
n n ◦ How to design the best kernel?
n n ◦ Extrapolation in Hamiltonian Parameter Spaces
n n ◦ Quantum Machine Learning
n n ◦ How to build the best quantum kernels

n

Mean: µ = 1
n

∑n
i=1Xi.

Expected value: E[X] = 1
n

∑n
i=1Xi

Variance: σ2
X = E[(X − µ)2]

Covariance:

Cov(X, Y) = E[(X − E(X))(Y − E(Y))] = E[(X − µx)(Y − µY)]

How are Gaussian Processes trained?

• As before, one starts by choosing a function for K(x,x′).

• The parameters of this function are then varied to maximize p(y|X).

• Recall p(y|X).. This is the term in the denominator of the Bayes’
theorem:

p(y|X) =

∫

θ
p(y|θ,X)p(θ|X)dθ

This multiplies the model likelihood p(y|θ,X) by p(θ|X) and inte-
grates over all random function values.

When we integrate over a variable as θ above, we are ‘marginalizing’
this variable.

The likelihood integrated as above is thus called ‘marginal likelihood’.

Marginal likelihood

Marginal likelihood for a Gaussian process can be expressed in terms
of kernels. – How?

To answer this questions, let’s consider again the prior p(θ|X).

I remind you that

n θ represents functions drawn from a Gaussian process

p(θ|X) is the unconditional distribution of the NN outputs

at the locations of the input space given by X

Because the functions θ are drawn from a Gaussian process, p(θ|X)
is a multi-variate Gaussian.

This means that p(θ|xi) and p(θ|xj) are both Gaussian with some
covariance Cov(xi,xj) between them.

We will choose the covariance of the Gaussian Process prior to be the
kernel function:

Cov(x,x′) = K(x,x′)

This is actually equivalent to the choice of the prior we had previously
made:

p(β) ∼ N (0,Σp)

To see this, consider

f (x) = βTϕ(x)

Then:

E[f (x)] = ϕ(x) TE[β] = 0 and

Cov(x,x′) = E[f (x)f (x′)] = ϕT(x)E[ββ T]ϕ(x′) = ϕT(x)Σpϕ(x′)

Our goal is to evaluate the marginal likelihood:

p(y|X) =

∫

θ
p(y|θ,X)p(θ|X)dθ

It is more convenient to work with the logarithm of marginal likeli-
hood.

Given that the prior’s covariance is the kernel matrix and the inte-
grand is a product of two Gaussians, it is actually possible to write
this in terms of the kernel matrix as follows:

log p(y|X) = −1

2
y T
(
K + σ2I

)
y − 1

2
log |K + σ2I| − n

2
log 2π

The purpose of training a Gaussian process is to find the parameters of
the kernel functionK(x,x′) that maximizes the logarithm of marginal
likelihood.

Key difference between GPR and KRR:

The parameters of the kernel function in KRR are found by cross-
validation.

The parameters of the kernel function for GPR are found by maxi-
mizing marginal likelihood.

GPR model prediction:

µ̂ = kT(x∗)
[
K + σ2I

]−1
y

KRR model predicition:

f̂ (x∗) = kT(x∗) [K + λI]−1 y

Model selection

Let’s say we have built two models with two different kernels.

How to tell which one is better?

The Bayesian approach gives us a way...

Model selection

• Consider a set of noisy data points.

• Consider two different models, such as, for example:

M1 and M2

• How can we tell which model is better?

• We will adopt the Bayesian view to answer this question.

• Within the Baysian approach, we have for modelMi:

P (Mi|Data) =
P (Data|Mi)P (Mi)

P (Data)

• For two modelsM1 andM2, we can write:

P (M1|Data)

P (M2|Data)
=
P (Data|M1)

P (Data|M2)
× P (M1)

P (M2)

• We see that the ratio of the posteriors is equal to the ratio of the
priors times the following factor:

P (Data|M1)

P (Data|M2)
⇐ the Bayes factor

• To calculate the Bayes factor, we need to compute P (Data|Mi) for
each model. How do we compute it?

• We can define the model likelihood as the following function:

L(β|Data,Mi) = p(Data|β,Mi)

• P (Data|Mi) is the integral:

P (Data|Mi) =

∫

β
p(Data|β,Mi)p(β|Mi)dβ

•We have integrated the model likelihood over the distribution of the
model parameters.

• The result is the marginal likelihood.

• If we don’t know anything about the data, we can set the priors for
different models equal:

P (M1) = P (M2)

• Then, the ratio of the posteriors is given by the ratio of the marginal
likelihoods:

P (M1|Data)

P (M2|Data)
=
P (Data|M1)

P (Data|M2)

• Thus, the relative magnitudes of the marginal likelihoods can be
used to tell which model is better.

• The trouble is, it is very difficult to calculate marginal likelihoods

Model selection .. let’s start over

Let’s say we have built two models with two different kernels.

How to tell which one is better?

When we train a model, we minimize a loss function or maximize log
likelihood.

Why not to just chose the model that gives a lower loss or bigger
likelihood? ... We can’t, because of overfitting

Generalization error

Definition: Test error = generalization error

ErrT = E
[
L(y, f̂ (X))|T

]
where T = fixed training set

Expected prediction error:

Err = E
[
L(y, f̂ (X))

]
= E [ErrT]

Bias vs Variance Trade-off

Consider an ensemble of data points that derives from the function
f (x) and some noise (ε) inherent to the data:

Data = f (x) + ε

The function f (x) is generally unknown and our goal is to infer it.

We build a regression fit of the data f̂ (x).

Now we want to test the performance of the fit at some point x0.

The expected prediction error at x0:

EPE(x0) = E

[(
f (x0) + ε− f̂ (x0)

)2
]

Let’s expand the square in the last equation:

EPE(x0) = E

[(
f (x0) + ε− f̂ (x0)

)2
]

=

E

[(
f (x0)− f̂ (x0)

)2
]

+ E
[
2ε
(
f (x0)− f̂ (x0)

)]
+ E

[
ε2
]

n

Note that for two independent random variables A and B:

E(A + B) = E(A) + E(B)

E(AB) = E(A)E(B)

E
[
(A−B)2

]
= E

[
(A)2

]
+ E

[
(B)2

]
− 2E(A)E(B)

Variance of A with mean µ = E
[
(A− µ)2

]

In our case, what are the random variables?

⇒ Noise ε. Note that E(ε) = 0.

n
Because E(ε) = 0, the second term: E

[
2ε
(
f (x0)− f̂ (x0)

)]
= 0

The third term: E(ε2) = σ2
ε is the variance of noise.

⇒ f̂ (x0) is another independent random variable. To see this, imagine
selecting training data at random and producing f̂ (x). Each time,
f̂ (x0) will be different.

⇒ Note also that E [f (x0)] = f (x0) because the function f (x) is not
random; it is a well-defined (although unknown) function.

Let’s now deal with the first term:

E

[(
f (x0)− f̂ (x0)

)2
]

= E
[
f̂2(x0)

]
− 2f (x0)E

[
f̂ (x0)

]
+ f2(x0)

We will now add and subtract E
[
f̂ (x0)

]
E
[
f̂ (x0)

]
to get:

E

[(
f (x0)− f̂ (x0)

)2
]

=

(
E
[
f̂ (x0)

]
− f (x0)

)2
+
(
E
[
f̂2(x0)

]
− E

[
f̂ (x0)

]
E
[
f̂ (x0)

])

Bias2
[
f̂ (x0)

]
+ Var

[
f̂ (x0)

]

The first term is the square of the bias of the model f̂ .

The second term is the variance of the model f̂ .

So, we see that for a model f̂ (x), the expected prediction error
at x0 is given by

EPE(x0) = Variance of data noise

+ Square of the bias of the model

+ Variance of the model

n n
Figure source: T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer (2001)

So, we need a good way to discriminate between models that also
accounts for their complexity.

How do we account for model complexity?

The Bayesian information criterion:

BIC = −2loglik + d log(n)

where n is the number of training points

d is the number of model parameters

loglik is the maximum value of the log likelihood

It turns out that BIC is very closely related to the logarithm of
marginal likelihood in the large n limit

In particular,

log(P (Data|Mi)) ≈ log(P (Data| ˆmodel parameters,Mi))−
d

2
log(n)

BIC can be used to estimate the posterior probability of each model
Mm as

e−
1
2BICm

N , where N =

M∑

l=1

e−
1
2BICl

BIC is asymptotically consistent as a model selection metric

Given the family of models, including the true model, the probability
that BIC will select the true model approaches one as n→∞

Given,

log(P (Data|Mi)) ≈ log(P (Data| ˆmodel parameters,Mi))−
d

2
log(n)

We can define

BIC = LMLGPR −
d

2
log n

where d is the number of kernel parameters in GP regression to dis-
criminate between kernels

As we saw, this is an approximation to the logarithm of the marginal
likelihood, which is valid in the large n limit.

This can be used to build better kernels

The beauty: we will see that this works even for low values of n

2

tron and phonon dispersions, and Ve�ph is the electron-
phonon coupling. We choose Ve�ph to be a combination
of two qualitatively di↵erent terms Ve�ph = ↵H1 + �H2,
where

H1 =
X

k,q

2ip
N

[sin(k + q) � sin(k)] c†
k+qck

⇣
b†
�q + bq

⌘
(3)

describes the Su-Schrie↵er-Heeger (SSH) [35] electron-
phonon coupling, and

H2 =
X

k,q

2ip
N

sin(q)c†
k+qck

⇣
b†
�q + bq

⌘
(4)

is the breathing-mode model [36]. The ground state band
of the model (2) represents polarons known to exhibit
two sharp transitions as the ratio ↵/� increases from
zero to large values [37]. At ↵ = 0, the model (2) de-
scribes breathing-mode polarons, which have no sharp
transitions [38]. At � = 0, the model (2) describes
SSH polarons, which exhibit one sharp transition in the
polaron phase diagram [35]. At these transitions, the
ground state momentum of the polaron changes abruptly,
as shown in Figure 2 (left). Our goal is to develop a ML
method that, using properties from one of the phases,
can predict the existence or absence of other phases.

Method. We use Gaussian Process (GP) regression as
the prediction method [41], described in detail in the Sup-
plemental Material [42]. The goal of the prediction is to
infer an unknown function f(·) given some inputs xi and
outputs yi. The assumption is that yi = f(xi). The func-
tion f is generally multidimensional so xi is a vector.

GPs do not infer a single function f(·), but rather a
distribution over functions, p(f |X,y), where X is a vec-
tor of all known xi and y is a vector of the corresponding
values yi. This distribution is assumed to be normal. The
joint Gaussian distribution of random variables f(xi) is
characterized by a mean µ(x) and a covariance matrix
K(·, ·). The matrix elements of the covariance Ki,j are
specified by a kernel function k(xi,xj) that quantifies the
similarity relation between the properties of the system
at two points xi and xj in the multi-dimensional space.

Prediction at x⇤ is done by computing the conditional
distribution of f(x⇤) given y and X. The mean of the
conditional distribution is [41]

µ(x⇤) =
X

i

d(x⇤,xi)yi =
X

i

↵ik(x⇤,xi) (5)

where ↵ = K�1y and d = K(x⇤,X)>K(X,X)�1. The
predicted mean µ(x⇤) can be viewed as a linear combina-
tion of the training data yi or as a linear combination of
the kernels connecting all training points xi and the point
x⇤, where the prediction is made. In order to train a GP
model, one must choose an analytical representation for
the kernel function.

It is – in principle – possible to use Eq. (5) for both in-
terpolation and extrapolation. However, the kernel func-
tion is found by analyzing a given set of data in order

to produce accurate interpolation results. There is no
guarantee that the same kernel function works for ex-
trapolation outside the range of available data.

No kernel

RBF MAT RQ LIN

RQ ⇥ LIN· · ·RQ + MAT · · · RQ + RBF

RQ ⇥ LIN + RBF· · ·RQ ⇥ LIN ⇥ RBF · · · RQ ⇥ LIN + MAT

FIG. 1. Schematic diagram of the kernel construction method
employed to develop a Gaussian Process model with extrap-
olation power. At each iteration, the kernel with the highest
Bayesian information criterion (11) is selected.

This is exemplified by the fact that the choice of
k(x⇤,xi) in Eq. (5) is not unique. For example, k can be
approximated by any of the following functions:

kLIN(xi,xj) = x>
i xj (6)

kRBF(xi,xj) = exp

✓
�1

2
r2(xi,xj)

◆
(7)

kMAT(xi,xj) =

✓
1 +

p
5r2(xi,xj) +

5

3
r2(xi,xj)

◆

⇥ exp
⇣
�
p

5r2(xi,xj)
⌘

(8)

kRQ(xi,xj) =

✓
1 +

|xi � xj |2
2↵`2

◆�↵

(9)

where r2(xi,xj) = (xi � xj)
> ⇥M ⇥ (xi � xj) and M is

a diagonal matrix with di↵erent length-scales `d for each
dimension of xi. The length-scale parameters `d, ` and
↵ are the free parameters. We describe them collectively
by ✓. A GP is trained by finding the estimate of ✓ (de-

noted by ✓̂) that maximizes the logarithm of the marginal
likelihood function:

log p(y|X, ✓, Mi) = �1

2
y>K�1y � 1

2
log |K| � n

2
log 2⇡

(10)

For solving an interpolation problem, it is su�cient to
choose any simple kernel (6) - (9). The e�ciency of the
interpolation depends on the kernel, but in the limit of
a large number of training points yi, any simple kernel
function produces accurate results [41]. Eq. (5) shows
that extrapolation is clearly sensitive to the particular
choice of the kernel function. A possible solution to this
problem is to use more complex functions for the kernels.

Start with conventional covariance functions (kernels), such as these ones:

Algorithm for optimal kernel construction

Combine them using a greedy search algorithm

No kernel

RBF MAT RQ LIN

RQ ⇥ LIN· · ·RQ + MAT · · · RQ + RBF

RQ ⇥ LIN + RBF· · ·RQ ⇥ LIN ⇥ RBF · · · RQ ⇥ LIN + MAT

Duvenaud, D. K.; Nickisch, H.; Rasmussen, C. E. Additive Gaussian Processes,
Adv. Neur. Inf. Proc. Sys. 2011, 24, 226

Duvenaud, D. K.; Lloyd, J.; Grosse, R.; Tenenbaum, J. B.; Ghahramani, Z.; Structure Discovery in
Nonparametric Regression through Compositional Kernel Search, Proceedings of the 30th
International Conference on Machine Learning Research 2013, 28, 1166

This is what happens with a poorly chosen kernel

The choice of kernel is important!

Inferring molecular properties from time-dependent observables

The choice of kernel is important!

Extrapolation of potential energy surfaces
Six-dimensional surface for H3O+

Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020)

Extrapolation of potential energy surfaces

Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020)

Six-dimensional surface for H3O+ (1000 ab initio geometries)

51 dimensions (5000 molecular geometries)

Hiroki Sugisawa, I. Sato and RVK, J. Chem. Phys. 153, 114101 (2020)

૛ ൈ

𝑹 :51d

𝑹ଵ, 𝑹ଶ: 21d

𝑹ଵଶ: 3d or 15d or 27d
or 39d or 51d

51d

39d

27d

15d

3d

(a)

(b) (c)

േ૛𝟎°

൅𝟎. ૛ Å
െ𝟎. ૚ Å൅𝟎. ૞𝟎 Å

െ𝟎. ૚𝟎 Å

േ𝟎. 𝟎૞Å

േ𝟎. ૛ Å

Ϭ͘ϲ Ϭ͘ϳ Ϭ͘ϴ Ϭ͘ϵ ϭ͘Ϭ ϭ͘ϭ ϭ͘Ϯ
D�΀�΁

ϱϬϬϬ

ϭϬϬϬϬ

ϭϱϬϬϬ

ϮϬϬϬϬ

ϮϱϬϬϬ

ϯϬϬϬϬ

ϯϱϬϬϬ
�Ŷ

Ğƌ
ŐǇ
�΀Đ
ŵ

оϭ
΁

Hiroki Sugisawa, I. Sato and RVK, J. Chem. Phys. 153, 114101 (2020)

51 dimensions (5000 molecular geometries)

57 Dimensional surface for aspirin

Kasra Asnaashari and R. V. Krems, arXiv: 2707.04779 (2021)

Hamiltonian parameters

Ha
m

ilt
on

ia
n

pa
ra

m
et

er
s

?

Phase	I

Phase	II

Phase	III

Hamiltonian parameters

Can Phase I be used to predict the properties of Phases II and III?

To do this, one needs to solve the extrapolation problem. How?

The key is in the complexity of the kernel function.

The complexity needs to be built up, but in a `physical’ way.

●

●

●

●

●

Rodrigo Vargas, John Sous, Mona Berciu and R. V. Krems, Phys. Rev. Lett. 121, 255702 (2018)
Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020)

Heisenberg spin model

Generalized polaron model

Felipe Herrera, Kirk Madison, RK, Mona Berciu, Phys. Rev. Lett. 110, 223002 (2013)

H =
X

k

✏kc
†
kck +

X

q

!qb
†
qbq + Ve�ph

Ve�ph = ↵H1 + �H2

H1 =
X

k,q

2ip
N

[sin(k + q) � sin(k)] c
†
k+qck

⇣
b
†
�q + bq

⌘

H2 =
X

k,q

2ip
N

sin(q)c
†
k+qck

⇣
b
†
�q + bq

⌘

Generalized polaron model

Felipe Herrera, Kirk Madison, RK, Mona Berciu, Phys. Rev. Lett. 110, 223002 (2013)

Polaron model

Rodrigo Vargas, John Sous, Mona Berciu and RK, Phys. Rev. Lett. 121, 255702 (2018)

Rodrigo Vargas and RK, arXiv: 1901.00854

Tree level

I II III IV

Quantum extrapolation problems

Choosing better kernels not only makes extrapolation possible,
but also allows models to extrapolate farther

Choosing better kernels is like replacing spectacles with binoculars
when it comes to quantum phase diagrams

This allows us to compute things we couldn’t imagine
just a few years ago… Work of Hiroki Sugisawa

Wave function of H5O3
- at the MP2 quantum chemistry level

Direct approach: 220 years on a single core of Intel i7-9700K
Our approach: 8 days

• Quantum dynamics calculations for complex
systems are difficult

• Such calculations must rely on approximations
• Can the results of approximate quantum

calculations be corrected by machine
learning?

A. Jasinski, J. Montaner, R. C. Forrey, B. H. Yang, P. C. Stancil, N. Balakrishnan,
R. Vargas-Hernandez, J. Dai and R. V. Krems, PRR 2, 032051 (2020)

Same models can be used for transfer learning

A. Jasinski, J. Montaner, R. C. Forrey, B. H. Yang, P. C. Stancil, N. Balakrishnan,
R. Vargas-Hernandez, J. Dai and R. V. Krems, PRR 2, 032051 (2020)

Quantum
Problem

Ha
m

ilt
on

ia
n

Pa
ra

m
et

er
s

Observables

Quantum
Problem

Ha
m

ilt
on

ia
n

Pa
ra

m
et

er
s

Observables

Extrapolation in
Hamiltonian
Parameter space

Quantum
Problem

Ha
m

ilt
on

ia
n

Pa
ra

m
et

er
s

Observables

Better accuracy
of quantum
dynamics

Quantum
Problem

Ha
m

ilt
on

ia
n

Pa
ra

m
et

er
s

Observables

Inverse
problems

Quantum
Problem

Ha
m

ilt
on

ia
n

Pa
ra

m
et

er
s

Observables

Extrapolation in
Hamiltonian
Parameter space

Better accuracy
of quantum
dynamics

Inverse
problems

ISSN 1463-9076

 PERSPECTIVE
 R. V. Krems
 Bayesian machine learning for quantum molecular
dynamics

rsc.li/pccp

PCCP
Physical Chemistry Chemical Physics

Volume 21 Number 25 7 July 2019 Pages 13377–13858

R. V. Krems,
PCCP 21, 13392 (2019)

If you know how to build the right kernel, predictions are easy!

... Can Quantum Computers help?

Better kernels lead to more powerful ML models!

Kernel functions are inner products in a Hilbert space.

Consider a quantum computer with n qubits, initially in state |0n〉.

Introduce a sequence of gates that produces a quantum state U(x)|0n〉

and another state U(x′)|0n〉

The measurable square of the inner product:

|〈0n|U†(x′)U(x)|0n〉|2

has all the properties of a kernel of an RKHS

Thus, projecting

U†(x′)U(x)|0n〉 onto |0n〉

can be another way of building kernels for kernel ML:

K(x,x′) = |〈0n|U†(x′)U(x)|0n〉|2

Question: Can such measurements be used to build kernels for ML?

Question: What is the best way to build quantum kernels for ML?

Question: Can quantum kernels outperform classical kernels for ML?

⇒ Quantum Machine Learning

What is the RKHS with the kernel function produced on a quantum
computer?

Consider the embedding of input features into quantum states:

x→ |ψ(x)〉

Define the kernel function as follows:

K(x, x′) := |〈ψ(x)|ψ(x′)〉|2

Then,

K(x, x′) = |〈ψ(x)|ψ(x′)〉|2 = 〈ψ(x)|ψ(x′)〉〈ψ(x′)|ψ(x)〉
= 〈ψ(x)|ρ(x′)|ψ(x)〉= Tr[ρ(x)ρ(x′)]

What is the RKHS that corresponds to this kernel function?

Consider a space of functions defined as follows:

f (x) = Tr[ρ(x)M] = 〈ψ(x)|M |ψ(x)〉
where M is a Hermitian operator acting in the space of d qubits.

K(x, ·) := Tr[ρ(x)ρ(·)] is a reproducing kernel for each element of
this space:

〈f (·), K(x, ·)〉 = Tr[ρ(x)M] = f (x)

Question: what is the dimensionality of this RKHS?

We can write:

〈Kx, Kx′〉 = |〈ψ(x)|ψ(x′)〉|2 =
∑

n

λnφn(x)φn(x′)

where Kx ∈ RKHS and ψ(x) is in the Hilbert space of the quantum
computer with d qubits.

This kernel function has ≤ 4d non-zero eigenvalues.

What implications does the finiteness of the RKHS have for problems
that can be addressed with current-day quantum computers?

Thus, projecting

U†(x′)U(x)|0n〉 onto |0n〉

can be another way of building kernels for kernel ML:

K(x,x′) = |〈0n|U†(x′)U(x)|0n〉|2

Question: Can such measurements be used to build kernels for ML?

Question: What is the best way to build quantum kernels for ML?

Question: Can quantum kernels outperform classical kernels for ML?

⇒ Quantum Machine Learning

What does outperform mean?

n ⇒ quantum advantage

n n = kernels that can’t be simulated classically?

n n = kernels that describe big data better?

n n = relevant in the ∞D limit for x?

What does outperform mean?

n ⇒ quantum advantage

n n = kernels that can’t be simulated classically?

n n = kernels that describe big data better?

n n = relevant in the ∞D limit for x?

Perhaps, there is no practical quantum advantage to present-day QML

n ⇒ better inference

n n Building good kernels is not trivial

n n Quantum kernels offer an alternative to classical kernels

What if we think about this as just another way to do classical ML?

What does outperform mean?

What if we think about this as just another way to do classical ML?

Can quantum kernels offer better inference for practical problems with
finite-dimensional x?

What does better inference mean?

n ⇒ More accurate predictions with the same (small) number of
training points

n ⇒ Goal: find the best kernels for each small-data problem

Question: Can QC be used to build useful kernels for ML?

Question: What is the best way to build quantum kernels for ML?

... How does Quantum Machine Learning work in practice?

Embedding input space into a quantum computer

We said before, let’s embed the input features into quantum states:

x→ |ψ(x)〉

How is this done in practice?

The quantum states are produced by gates acting on qubits:

Gates:

RZ(λ)⇒
(

1 0

0 eiλ

)
Simplest embedding: λ = x

Embedding input space into a quantum computer

RZ(λ)⇒
(

1 0

0 eiλ

)
Simplest embedding: λ = x

Need as many qubits as the number of input dimensions, one qubit
per dimension

One possible Strategy:

n n ⇒ Embed using RZ(λ)

n n ⇒ Entangle using CNOTs:

CNOT⇒




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Embedding input space into a quantum computer

Another Strategy:

⇒ Embed using a combination of one- and two-qubit gates

RZ(λ)⇒
(

1 0

0 eiλ

)
λi = θixi

RZZ(λij)⇒




e−iλij 0 0 0

0 eiλij 0 0

0 0 eiλij 0

0 0 0 e−iλij




λij = exp
[
−(xi − xj)2/θij

]

Regression:
Classification:

Model Model

Regression: a 6D PES for molecule H3O+ – work of Jun Dai at UBC

RH(2) O(Å)

0.80.91.0 1.1 1.2 1.3 1.4

R H (3)
O
(Å)

0.8
0.9

1.0
1.1

1.2
1.3

1.4
0

10000
20000
30000
40000
50000

5000

10000

15000

20000

En
er

gy
(c

m
1) ⇐ PES built
with a quantum kernel
6 qubits for 6 dimensions

This is what we
would like to see ⇒

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
R(Å)

0

2500

5000

7500

10000

12500

15000

17500

20000

En
er

gy
(c

m
1)

Original Surface
GP Predicted

Regression: a 6D PES for molecule H3O+ – work of Jun Dai at UBC

RH(2) O(Å)

0.80.91.0 1.1 1.2 1.3 1.4

R H (3)
O
(Å)

0.8
0.9

1.0
1.1

1.2
1.3

1.4
0

10000
20000
30000
40000
50000

5000

10000

15000

20000

En
er

gy
(c

m
1) ⇐ PES built
with a quantum kernel
6 qubits for 6 dimensions

Jun’s 1st attempt ⇒

Regression: a 6D PES for molecule H3O+ – work of Jun Dai at UBC

RH(2) O(Å)

0.80.91.0 1.1 1.2 1.3 1.4

R H (3)
O
(Å)

0.8
0.9

1.0
1.1

1.2
1.3

1.4
0

10000
20000
30000
40000
50000

5000

10000

15000

20000

En
er

gy
(c

m
1) ⇐ PES built
with a quantum kernel
6 qubits for 6 dimensions

Jun’s 2nd attempt ⇒

Regression: a 6D PES for molecule H3O+ – work of Jun Dai at UBC

RH(2) O(Å)

0.80.91.0 1.1 1.2 1.3 1.4

R H (3)
O
(Å)

0.8
0.9

1.0
1.1

1.2
1.3

1.4
0

10000
20000
30000
40000
50000

5000

10000

15000

20000

En
er

gy
(c

m
1) ⇐ PES built
with a quantum kernel
6 qubits for 6 dimensions

Jun’s 3d attempt ⇒

Regression: a 6D PES for molecule H3O+ – work of Jun Dai at UBC

0.50 0.75 1.00 1.50
Energy(cm 1) 1e4

102

103

RM
SE

(c
m

1)

Unentangled quantum kernel
RBF
Entangled quantum kernel

What is the best way to build quantum kernels for ML?

⇒ work of Elham Torabian at UBC

Does the architecture of a quantum circuit matter?

⇒ work of Elham Torabian at UBC

Classification problem – are perovskites metals?

⇒ work of Elham Torabian at UBC

Perovskites are compounds that have the crystal structure of CaTiO3

XIIA2+VIB4+X3
2−

Quantum SVM – not all quantum circuits are created equal...

⇒ work of Elham Torabian at UBC

Quantum SVM – not all quantum circuits are created equal...

⇒ work of Elham Torabian at UBC

