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Two lessons

Representation learningDifferentiate programming



https://medium.com/@karpathy/software-2-0-a64152b37c35

Andrej Karpathy
Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student 
at Stanford. I like to train deep neural nets on large datasets.
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Writing software 2.0 by gradient search in the program space 

Differentiable Programming
Traditional

Machine Learning



https://medium.com/@karpathy/software-2-0-a64152b37c35• Computationally homogeneous

Benefits of Software 2.0 

• Simple to bake into silicon

• Constant running time

• Constant memory usage

• Highly portable & agile

• Modules can meld into an optimal whole

• Better than humans 

Andrej Karpathy
Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student 
at Stanford. I like to train deep neural nets on large datasets.

Writing software 2.0 by gradient search in the program space 

Differentiable Programming



Demo: Inverse Schrodinger Problem
Given ground state density, how to design the potential ? 

[−
1
2

∂2

∂x2
+ V(x)] Ψ(x) = EΨ(x)

https://colab.research.google.com/drive/1e1NFA-E1Th7nN_9-DzQjAaglH6bwZtVU?usp=sharing



What is under the hood ? 



Deep learning composes differentiable components to a program 
e.g. a neural network, then optimizes it with gradients 

What is deep learning doing?



“comb graph“

Automatic differentiation on 
computation graph
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• Accurate to the machine precision 

• Same computational complexity as the function evaluation: 
Baur-Strassen theorem ’83 

• Supports higher order gradients

Advantages of AD: 
�   accurately to machine precision 
 
�

Accuracy of AD can achieve machine precision�

Usual finite difference has truncation and round-off error. 
However, the accuracy of AD can be up to machine precision.�

Advantages of AD: 
�     AD can evaluate arbitrary order derivatives 

Computational Cost of automatic differentiation�

Advantages of automatic differentiation 



Computer simulation as a learnable model

Li et al  
PRL ’21 

Density 
functional
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Published as a conference paper at ICLR 2019
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Figure 1: An unrolled simulator as a model for protein structure. NEMO combines a neural
energy function for coarse protein structure, a stochastic simulator based on Langevin dynamics
with learned (amortized) initialization, and an atomic imputation network to build atomic coordinate
output from sequence information. It is trained end-to-end by backpropagating through the unrolled

folding simulation.

protein folding (Dill et al., 2017), in which the folds that natural protein sequences adopt are those
that minimize free energy. Without the availability of external information such as coevolutionary
information (Marks et al., 2012) or homologous structures (Martı́-Renom et al., 2000) to constrain the
energy function, however, contemporary simulations are challenged to generate globally favorable
low-energy structures in available time.

How can we get the representational benefits of energy-based models with the sampling efficiency of
directed models? Here we explore a potential solution of directly training an unrolled simulator of
an energy function as a model for data. By directly training the sampling process, we eschew the
question ‘when has the simulator converged’ and instead demand that it produce a useful answer
in a fixed amount of time. Leveraging this idea, we construct an end-to-end differentiable model
of protein structure that is trained by backpropagtion through folding (Figure 1). NEMO (Neural
energy modeling and optimization) can learn at scale to generate 3D protein structures consisting of
hundreds of points directly from sequence information. Our main contributions are:

• Neural energy simulator model for protein structure that composes a deep energy func-
tion, unrolled Langevin dynamics, and an atomic imputation network for an end-to-end
differentiable model of protein structure given sequence information

• Efficient sampling algorithm that is based on a transform integrator for efficient sampling
in transformed coordinate systems

• Stabilization techniques for long roll-outs of simulators that can exhibit chaotic dynamics
and, in turn, exploding gradients during backpropagation

• Systematic analysis of combinatorial generalization with a new dataset of protein se-
quence and structure

1.1 RELATED WORK

Protein modeling Our model builds on a long history of coarse-grained modeling of protein
structure (Kolinski et al., 1998; Kmiecik et al., 2016). Recently, multiple groups have demonstrated
how to learn full force fields using likelihood-based approaches (Jumper et al., 2018; Krupa et al.,
2017), similar to our maximum likelihood loss (but without backpropagtion through folding for fast
sampling). While this work was in progress, two groups reported neural models of protein structure
(AlQuraishi, 2018; Anand & Huang, 2018), where the former focused on modeling structure in
terms of backbone angles and the latter in terms of residue-residue distances. We show how an
energy function provides a natural framework to integrate both kinds of constraints, which in turn is
important for achieving sample-efficient structural generalization.

Learning to infer or sample Structured prediction includes a long history of casting predictions
in terms of energy minimization (LeCun et al., 2006). Recently, others have built hybrid neural
networks that use differentiable optimization as a building block in neural architectures (Wang et al.,

2

Protein 
folding

Ingraham et al  
ICLR ‘19
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iteration,w
e
find

accurate
m
odels

w
ith

very
little

data
and

m
uch

greater
generalizability.

O
ur

results
are

illustrated
in

Fig.
1,
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is
for

a
one-dim

ensional
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for

testing
electronic

structure
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[46].
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distribution
of

curves
of

the
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L
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odel
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predicting

E
from
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(direct
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L
)
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the
physics.
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the
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the
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functional
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perspective,
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converges
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Differentiate through the simulation to learn the model



Coil design in fusion reactors (stellarator)  



Coil parameters Total cost

Differentiable stellarator design

Differentiable programming is broader than training neural networks

Back propagation for cheap and accurate gradient

McGreivy et al  2009.00196



https://colab.research.google.com/
github/google/jax/blob/master/

notebooks/autodiff_cookbook.ipynb

Black  
magic box 

Chain  
rule

Functional 
differential geometry 

Differentiating a general computer program (rather than neural 
networks) calls for deeper understanding of  the technique



Reverse versus forward mode

Reverse mode AD: Vector-Jacobian Product of primitives

• Backtrace the computation graph 
• Needs to store intermediate results 
• Efficient for graphs with large fan-in

∂ℒ
∂θ

=
∂ℒ
∂xn

∂xn

∂xn−1
⋯

∂x2

∂x1

∂x1

∂θ

Backpropagation = Reverse mode AD applied to neural networks



Reverse versus forward mode

Forward mode AD: Jacobian-Vector Product of primitives

• Same order with the function evaluation 
• No storage overhead 
• Efficient for graph with large fan-out

∂ℒ
∂θ

=
∂ℒ
∂xn

∂xn

∂xn−1
⋯

∂x2

∂x1

∂x1

∂θ

Less efficient for scalar output, but useful for higher-order derivatives



How to think about AD ?
• AD is modular, and one can control its granularity 

• Benefits of writing customized primitives 

• Reducing memory usage 

• Increasing numerical stability 

• Call to external libraries written agnostically to AD
(or, even a quantum processor)

https://github.com/PennyLaneAI/pennylane



Example of primitives

Loop/Condition/Sort/Permutations are also differentiable 

…

~200 functions to cover most of  numpy in HIPS/autograd
https://github.com/HIPS/autograd/blob/master/autograd/numpy/numpy_vjps.py

Primitives with gradients implemented in Autograd�

http://videolectures.net/deeplearning2017_johnson_automatic_differentiation/



Differentiable programming tools

HIPS/autograd

SciML



Differentiable Scientific Computing
•  Many scientific computations (FFT, Eigen, SVD!) are differentiable 

•  Differentiable ray tracer

•  Differentiable Monte Carlo/Tensor Network/Functional RG/
Dynamical Mean Field Theory/Density Functional Theory/
Hartree-Fock/Coupled Cluster/Gutzwiller/Molecular Dynamics…

•  ODE integrators are differentiable with O(1) memory 

Differentiable fluid simulationsand

Differentiate through domain-specific computational processes 
to solve learning, control, optimization and inverse problems

https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://people.csail.mit.edu/tzumao/diffrt/
https://arxiv.org/abs/1806.07366
https://rse-lab.cs.washington.edu/papers/spnets2018.pdf


V ΨH

matrix
diagonalization

 ℒ

Inverse Schrodinger Problem

Differentiable Eigensolver

Useful for inverse Kohn-Sham problem, Jensen & Wasserman ‘17 



Differentiable Eigensolver

H Ψ = ΨE
Forward mode: What happen if H → H + dH Perturbation theory

Reverse mode: How should I change 

?

∂ℒ/∂Ψ ∂ℒ/∂Eand ?
Transposed

perturbation theory!
H given

Hamiltonian engineering via differentiable programming 

https://github.com/wangleiphy/DL4CSRC/tree/master/2-ising See also Fujita et al, PRB ‘18
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where Ei,j = dj − di. Since the diagonal elements of this are zero, it follows that

dD = I ◦ (U−1dAU).

The off-diagonal elements of dC are given by the off-diagonal elements of the equation

E ◦ dC + dD = U−1dAU.

The diagonal elements depend on the choice of normalisation for the eigenvectors. Usu-
ally, they are chosen to have unit magnitude, but if the subsequent use of the eigenvectors
is unaffected by their magnitude it is more convenient to set the diagonal elements of
dC to zero and so

dC = F ◦ (U−1dAU), =⇒ dU = U
(
F ◦ (U−1dA U)

)
,

where Fi,j = (dj − di)−1 for i $= j, and zero otherwise. Hence, the forward mode
sensitivity equations are

Ḋ = I ◦ (U−1Ȧ U),

U̇ = U
(
F ◦ (U−1Ȧ U)

)
.

In reverse mode, using the identity Tr(A (B◦C)) = Tr((A◦BT ) C), we get

Tr
(
D

T
dD + U

T
dU
)

= Tr
(
D

T
U−1dA U

)
+ Tr

(
U

T
U
(
F ◦ (U−1dA U)

))

= Tr
(
D

T
U−1dA U

)
+ Tr

((
(U

T
U) ◦ F T

)
U−1dA U

)

= Tr
(
U
(
D

T
+ (U

T
U) ◦ F T

)
U−1dA

)

and so
A = U−T

(
D + F ◦ (UT U)

)
UT .

3.2 Singular value decomposition

The SVD decomposition of a matrix A of dimension m × n is

A = U S V T

where S has the same dimensions as A and has zero entries apart from the main diagonal
which has non-negative real values arranged in descending order. U and V are square
orthogonal real matrices of dimension m and n, respectively. U , S and V are the
quantities returned by the MATLAB function svd and the objective is to determine
their forward and reverse mode sensitivities.

Differentiation gives

dA = dUS V T + U dS V T + US dV T .

https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf Richard Martin, Electronic structure

Automatic differentiation Linear response theory

|Ψ⟩H  ⟨O⟩

same thing

Report no. 08/01

An extended collection of matrix derivative results
for forward and reverse mode algorithmic

differentiation

Mike Giles
Oxford University Computing Laboratory, Parks Road, Oxford, U.K.

This paper collects together a number of matrix derivative results which
are very useful in forward and reverse mode algorithmic differentiation (AD).
It highlights in particular the remarkable contribution of a 1948 paper by
Dwyer and Macphail which derives the linear and adjoint sensitivities of a
matrix product, inverse and determinant, and a number of related results
motivated by applications in multivariate analysis in statistics.

This is an extended version of a paper which will appear in the proceed-
ings of AD2008, the 5th International Conference on Automatic Differentia-
tion.

Key words and phrases: algorithmic differentiation, linear sensitivity analysis,
numerical linear algebra

Oxford University Computing Laboratory

Numerical Analysis Group

Wolfson Building

Parks Road

Oxford, England OX1 3QD January, 2008



Adiabatic perturbation

4 Rolf Heid Autumn School on Correlated Electrons, Jülich, September 2020

Qn =
dnE

dln

����
l!0

type of perturbation l order n physical property Q

displacements of atoms 1 atomic force
dR 2 force constants

� 3 anharmonic force constants
homogeneous strain h 1 stress

2 elastic constants
� 3 higher order elastic constants

homogeneous electric field E 1 dipole moment
2 polarizability

dR + h 2+1 Grüneisen parameter
dR + E 1+2 Raman scattering cross section

Density functional perturbation theory

Differentiable DFT for a 
unified, flexible, and (very likely) more efficient framework

Baroni et al,  
RMP 2001



Neural Ordinary Differential Equations

Chen et al, 1806.07366 NIPS ’18 Best paper award

Residual network ODE integration

xt+1 = xt + f(xt) dx/dt = f(x)

cf Harbor el al 1705.03341 
Lu et al 1710.10121, E 17’…
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Neural Ordinary Differential Equations

Chen et al, 1806.07366 NIPS ’18 Best paper award

xt+1 = xt + f(xt) dx/dt = f(x)
cf Harbor el al 1705.03341 
Lu et al 1710.10121, E 17’…

Residual network ODE integration



Backpropagate through ODE solver
dx
dt

= f(x, θ, t)

x(t) =
∂ℒ
∂x(t)

Adjoint satisfies another ODE

dx(t)
dt

= − x(t)
∂f(x, θ, t)

∂x

 Gradient w.r.t. parameter
∂ℒ
∂θ

= ∫
T

0
dt x(t)

∂f(x, θ, t)
∂θ

ℒx1 x2

θ

xN. . .x0

Exercise:  
Derive this!



Why do we need Neural ODE ?

• Neural ODE has constant memory usage  

• Works for black box ODE integrator 

• Works with adaptive steps and implicit schemes

Backpropagating 
through a fluid simulation

https://github.com/HIPS/autograd/blob/master/examples/fluidsim/fluidsim.py
https://github.com/HIPS/autograd/blob/master/examples/fluidsim/fluidsim.py


Dynamics systems Principle of least actions

Optics, (quantum) mechanics, field theory…

S = ∫ ℒ(qθ, ·qθ, t)dtdx
dt

= fθ(x, t)

Classical and quantum control

Differentiable ODE integrators
“Neural ODE” Chen et al, 1806.07366



Differentiable functional optimization

T = ∫
x1

x0

1 + (dy/dx)2

2g(y1 − y0)
dx

The brachistochrone problem 
Johann Bernoulli,1696

https://github.com/QuantumBFS/SSSS/tree/master/1_deep_learning/brachistochrone



Dynamics systems Principle of least actions

Optics, (quantum) mechanics, field theory…

S = ∫ ℒ(qθ, ·qθ, t)dtdx
dt

= fθ(x, t)

Classical and quantum control

Differentiable ODE integrators
“Neural ODE” Chen et al, 1806.07366



Quantum optimal control

No gradient: 
not scalable

Forward mode: 
slow

Reverse mode w/ discretize steps:  
piesewise-constant assumption

i
dU
dt

= HU

https://qucontrol.github.io/krotov/
v1.0.0/11_other_methods.html

Differentiable programing (Neural ODE) for 
unified, flexible, and efficient quantum control 

https://colab.research.google.com/drive/
1T0_sJMwmk7rbpxHMcBZwdD9pnYZx93oh?usp=sharing



Differentiable Programming Tensor Networks 

Liao, Liu, LW, Xiang, 1903.09650, PRX ‘19 https://github.com/wangleiphy/tensorgrad
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Figure 2. (a) The iteration step of TRG. (b) The iteration step of
CTMRG. Each tensor is a node in the computation graph. The prim-
itive functions in the computation graphs are SVD and tensor con-
tractions.

to rescale the tensor elements after each iteration. The com-
putational cost of TRG method scales O(�6) and the memory
cost scales asO(�4). After unrolling the iterations, the compu-
tation graph of the TRG method is similar to the simple chain
graph shown in Fig. 1(a). Within each iteration step, the basic
operations are tensor index permutation, truncated SVD and
tensor contractions. Since each of these operations is di↵er-
entiable, one can backpropagate through the TRG procedure
to compute the derivative of a downstream objective function
with respect to the input tensor.

2. Corner transfer matrix renormalization group

The computation graph of the corner transfer matrix renor-
malization group (CTMRG) [64] has a more interesting topol-
ogy. The goal of CTMRG calculation is to obtain converged
corner and edge tensors which represent the environment de-
grees of freedom of the bulk tensor.

In cases where the bulk tensor has the full symmetry of the
square lattice, the step of one CTMRG iteration is shown in
Fig. 2(b). 1� Contract the bulk tensor with the corner and edge
tensors to form a 4-leg tensor. 2� Perform truncated SVD to
the 4-leg tensor, keeping the singular dimensions up to the
cut o↵ �. Keep the truncated singular matrix as the isomet-
ric projector. 3� Apply the isometry to the 4-leg tensor from
the first step to find a new corner tensor. 4� Apply the same
isometry to find a new edge tensor for the next step. And iter-
ate this procedure until convergence. One sees that the same
bulk tensor with bond dimension d appears in each step of the

CTMRG iteration. Due to this reason, the converged environ-
ment tensors will depend on the bulk tensor in a complicated
way.

Unlike the TRG method [57], the CTMRG approach grows
the system size linearly. So one may need to iterate a bit
more steps to reach convergences in CTMRG. On the other
hand, the computational complexity O(d3�3) and memory
cost O(d2�2) of CTMRG are smaller than the ones of TRG
in terms of the cuto↵ bond dimension.

III. TECHNICAL INGREDIENTS

To compute gradients of a tensor network program using
reverse mode automatic di↵erentiation, one needs to trace the
composition of the primitive functions and propagate the ad-
joint information backward on the computation graph. Thank-
fully, modern di↵erentiable programming frameworks [50–
54] have taken care of tracing and backpropagation for their
basics data structure, di↵erentiable tensors, automatically.

What one needs to focus on is to identify suitable primitives
of tensor network programs and define their vector-Jacobian
products for backpropagation. The key components of tensor
network algorithms are the matrix and tensor algebras. And
there are established results on backward through these op-
erations [68–70]. First of all, it is straightforward to wrap
all BLAS routines as primitives with customized backward
functions. Next, although being less trivial, it is also possible
to derive backward rules for many LAPACK routines such as
the eigensolver, SVD, and QR factorization [68]. By treating
these linear algebra operations as primitives, one can com-
pose a di↵erentiable program with e�cient implementations
of matrix libraries.

There are, however, a few practical obstacles to stable and
scalable implementation of di↵erentiable tensor network pro-
grams. First, the backward for the eigensolver and SVD may
face numerical instability with degeneracy in the eigenvalues
or singular values. Second, the reverse mode automatic di↵er-
entiation may incur large memory consumption, which pre-
vents one from reaching the same bond dimension of an ordi-
nary tensor network program. We present solutions to these
problems in below.

A. Stable backward through linear algebra operations

We present several key results on matrix derivatives involv-
ing linear algebra operations that are relevant to tensor net-
work algorithms. Recall the modular nature of reverse mode
automatic di↵erentiation, one just needs to specify the local
backward function to integrate these components into a di↵er-
entiable program. We will comment on their connections to
physics literature and pay special attention to stable numeri-
cal implementations [39]. For more information, one can refer
to [68–70].
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Figure 2. (a) The iteration step of TRG. (b) The iteration step of
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to compute the derivative of a downstream objective function
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ate this procedure until convergence. One sees that the same
bulk tensor with bond dimension d appears in each step of the

CTMRG iteration. Due to this reason, the converged environ-
ment tensors will depend on the bulk tensor in a complicated
way.

Unlike the TRG method [57], the CTMRG approach grows
the system size linearly. So one may need to iterate a bit
more steps to reach convergences in CTMRG. On the other
hand, the computational complexity O(d3�3) and memory
cost O(d2�2) of CTMRG are smaller than the ones of TRG
in terms of the cuto↵ bond dimension.
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To compute gradients of a tensor network program using
reverse mode automatic di↵erentiation, one needs to trace the
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fully, modern di↵erentiable programming frameworks [50–
54] have taken care of tracing and backpropagation for their
basics data structure, di↵erentiable tensors, automatically.

What one needs to focus on is to identify suitable primitives
of tensor network programs and define their vector-Jacobian
products for backpropagation. The key components of tensor
network algorithms are the matrix and tensor algebras. And
there are established results on backward through these op-
erations [68–70]. First of all, it is straightforward to wrap
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functions. Next, although being less trivial, it is also possible
to derive backward rules for many LAPACK routines such as
the eigensolver, SVD, and QR factorization [68]. By treating
these linear algebra operations as primitives, one can com-
pose a di↵erentiable program with e�cient implementations
of matrix libraries.

There are, however, a few practical obstacles to stable and
scalable implementation of di↵erentiable tensor network pro-
grams. First, the backward for the eigensolver and SVD may
face numerical instability with degeneracy in the eigenvalues
or singular values. Second, the reverse mode automatic di↵er-
entiation may incur large memory consumption, which pre-
vents one from reaching the same bond dimension of an ordi-
nary tensor network program. We present solutions to these
problems in below.

A. Stable backward through linear algebra operations

We present several key results on matrix derivatives involv-
ing linear algebra operations that are relevant to tensor net-
work algorithms. Recall the modular nature of reverse mode
automatic di↵erentiation, one just needs to specify the local
backward function to integrate these components into a di↵er-
entiable program. We will comment on their connections to
physics literature and pay special attention to stable numeri-
cal implementations [39]. For more information, one can refer
to [68–70].
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Figure 3. Energy density and specific heat of the 2D Ising model.
They are computed by taking the first and second order derivative of
the free energy obtained after 30 TRG iteration steps with a cuto↵
bond dimension � = 30. Solid lines are exact solutions [89].

dimensional tensor network with bond dimension D = 2

Z = . (8)

The bulk tensor is [90]

Tuldr = =

p
�u�l�d�r

2
�mod(u+l�d�r,2), (9)

where �u = e
� + (�1)u

e
��. We contract the infinite tensor

network using the TRG approach discussed in Sec. II B 1. We
use a cut o↵ bond dimension � = 30 and iterate for 30 TRG
steps. Finally, we obtain the partition function Eq. (8) and the
free energy by tracing out the bulk tensor.

Next, we compute the physical observables such as energy
density and specific heat by directly taking derivatives of the
free energy using automatic di↵erentiation, as shown in Fig. 3.
One notices that the energy density shows a kink and the
specific heat exhibits a peak around the critical temperature
�c = ln(1 +

p
2)/2 ⇡ 0.44068679. Unlike numerical di↵er-

entiation, these results are free from the finite di↵erence er-
ror [60, 91]. Accurate computation of higher order derivatives
of the tensor network algorithm will be useful to investigate
thermal and quantum phase transitions. We note that it is in
principle possible to obtain the specific heat by directly com-
puting the energy variance [35, 92], which, however, involves
cumbersome summation of geometric series expressed in term
of tensor networks.

There are alternative ways to compute the specific heat with
automatic di↵erentiation. For example, one can directly com-
pute the energy via using the impurity tensor and then take the
first order derivative to obtain the specific heat. Or, one can
also use forward mode automatic di↵erentiation since there

is only one input parameter � to be di↵erentiated. We have
purposely chosen the present approach to show o↵ the power
of di↵erentiable programming with the reverse mode auto-
matic di↵erentiation technique. Backpropagating through the
whole TRG procedure, and in particular the SVD, allows one
to compute physical observables using higher order deriva-
tives. It is remarkable that this works at all given many of the
degenerate singular values due to the Z2 symmetry of the Ising
model [47]. To obtain correct physical results, it is crucial to
implement the SVD backward function in a numerical stable
way as explained in Sec. III A 2.

B. Gradient based optimization of iPEPS

We consider a variational study of the square lattice antifer-
romagnetic Heisenberg model with the Hamiltonian

H =
X

hi, ji
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z

i
S

z

j
. (10)

We consider an infinite projected entangled pair state (iPEPS)
as the variational ansatz. The variational parameters are the
elements in the iPEPS

A
s

uldr
= , (11)

where s denotes the physical indices, and the remaining in-
dices u, l, d, r are for virtual degrees of freedom of the bond
dimension D. We initialize the tensor elements with random
Gaussian variables. The overlap of the iPEPS forms a tensor
network, where the bulk tensor is the double layer tensor with
bond dimension d = D

2

Tuldr = = . (12)

To contract the infinite tensor network formed by this bulk
tensor we use the CTMRG method reviewed in Sec. II B 2.
We initialize the corner and edge tensors by partially tracing
out legs from the bulk tensor, then perform the CTMRG iter-
ation until we reach convergence in the corner and edge ten-
sors. After contraction, we can evaluate the expected energy
h |H| i/h | i. Due to the translational invariance of the prob-
lem, it is su�cient to consider the expected energy on a bond

L =

,
, (13)

where the black rectangle in Eq. (13) is the Hamiltonian
operator acting on a bond. We have performed a basis
rotation to the Hamiltonian so that the ground state will
have a single site unit cell. We use cuto↵ bond dimension
� = 30, 50, 80, 100, 144, 160 for D = 2, 3, . . . , 7 respectively.

=
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However, TNS calculations are a two-step process,
where the wave function is obtained first and then used
to calculate physical expectation values. This latter step
requires projection onto a 1D MPS basis, whose dimension
for convergence is found to scale approximately as Dmps ≈
4D2. Once D≳ 15, the evaluation step becomes the more
computationally intensive problem, and here we implement
new methodology (outlined in Sec. SII [20]) by which we
extend the accessible D range.
We begin by presenting results from the 3-site-simplex

(3-PESS) ansatz for all accessible D values. The ground-
state energy, E0ðDÞ, of the nearest-neighbor KHAF is
shown in Fig. 1(a). At large D, our estimate lies below
those obtained from all known techniques other than
DMRG studies of specific clusters, which are not an upper
bound. We remark that our E0ðDÞ values are significantly
lower than those of an SU(2)-invariant TNS analysis [19].
We find that E0ðDÞ converges algebraically with D, as on
the Husimi lattice [57], indicating a gapless ground state
[58]. The power-law form E0ðDÞ ¼ e0 þ aD−α, shown in
Fig. 1(b), delivers our best estimate of the ground-state
energy, e0 ¼ −0.43752ð6ÞJ. Figure 1(c) illustrates the
convergence of E0ðDmpsÞ for selected values of D; we
note that this part of the process is not variational and
comment in detail in Sec. SII of the SM [20]. Optimized fits

to a regime of exponential convergence in Dmps were used
to extrapolate towards the values of E0ðDÞ shown in
Figs. 1(a) and 1(b), and to determine the associated error
bars, on the basis of which we limit our claims of reliability
to D ≤ 25.
One key qualitative property of our PESS wave function

is a finite 120° magnetic order at all finite D values, as
shown in Figs. 2(a) and 2(b). The order parameter, MðDÞ,
varies algebraically with 1=D over the available D range,
tending to zero as D → ∞, as required of a spin liquid.
Figure 2(c) illustrates the convergence of MðDmpsÞ for
D ¼ 15 and 20, where an algebraic form was deduced from
the truncation error, and reliable extrapolations to large
Dmps were obtained only for D ≤ 20.
The Husimi lattice provides essential confirmation of our

results. It possesses the same local physics as the kagome
lattice, but less frustration from longer paths, and it allows
PESS calculations up to D ¼ 260, yielding accurate
extrapolations to the large-D limit [57]. It confirms the
crucial qualitative statement that magnetically ordered
states have the lowest energies for spatially infinite systems

FIG. 1. Ground-state energy of the KHAF. (a) E0 as a function
of D, shown for the 3-PESS and simple-update method up to
D ¼ 25, 3-PESS by full update to D ¼ 13, and 9-PESS with
simple update to D ¼ 15. Shown for comparison are results from
other numerical studies. (b) E0ðDÞ for the 3-PESS ansatz, shown
as a function of 1=D and compared with results obtained for the
Husimi lattice [57]. (c) Convergence of E0ðDÞ as a function of
Dmps, shown for several values of D.

(a)

(b)

(c)

FIG. 2. Staggered magnetization of the KHAF at finiteD. (a)M
as a function of D, shown for the 3-PESS and simple-update
method up to D ¼ 20, 3-PESS by full update to D ¼ 13, and
9-PESS with simple update to D ¼ 15. Shown for comparison
are results obtained for the Husimi lattice [57]. (b) M as a
function of 1=D0.588, the power-law form obtained for the Husimi
lattice. (c) Convergence ofMðDÞ as a function ofDmps, shown for
D ¼ 15 and D ¼ 20.
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observables. In this scheme, the contraction of the infinite bra
and ket tensor networks surrounding a unit cell is effectively
represented by introducing a boundary made up of so-called
environment tensors (see Fig. 1). The environment tensors
are constructed via iterative absorption and renormalization
of unit-cell tensors into the boundary tensors in Fig. 1.
Importantly, the accuracy of the contraction is controlled by the
bond dimension of the environment tensors, usually denoted by
χ . For the data presented here, χ was chosen to be larger than
D2 in all cases and large enough to yield negligible variations
in the energies. For a more precise description of the details
involved in the contraction scheme, we refer the reader to
Ref. [34].

C. Optimization

Optimization of the tensors generating the ansatz wave
functions is typically performed using either direct energy
minimization or imaginary-time evolution. Here, we have used
the latter combined with the so-called full update scheme [23].
In the imaginary-time evolution procedure by starting from
some initial state |ψ0〉 of the form (2) we perform subsequent
projection steps

|ψk+1〉 = e−τ Ĥ |ψk〉
‖e−τ Ĥ |ψk〉‖

, (3)

so provided that the initial state |ψ0〉 had some overlap with
the ground state of the model enough iterations will eventually
converge to the ground state.

For the data presented it was observed that values below
τ = 0.01 for the imaginary-time evolution did not provide
a significant improvement in the quality of the data. In all
cases, the number of cumulative iterations was such that it
led to values of at least β = 20 and in all cases it was found
to be large enough to achieve convergence of the variational
energies. Here, we point out that lower-cost variants such as
the simple update [41], in which an explicit construction of
the environment is omitted, failed to yield good results in
the Kitaev limit and thus we opted for performing all the
simulations using the full update, in spite of its significantly
larger computational cost [23].

IV. KITAEV LIMIT BENCHMARKS

In the limits ϕ = ±90◦, the model in Eq. (1) becomes the
well-known Kitaev honeycomb model [14] with equal bond
couplings (B phase). Indeed, even though the interactions on
each bond are of Ising type, the fact that different bonds
correspond to different quantization axes makes the Kitaev
model a highly frustrated one, even classically, since it is
impossible to satisfy all energy constraints simultaneously.
From the exact solution of the Kitaev model [14] it is known
that inside the B phase two different types of excitations
arise: magnetic vortices which are gapped and localized
in the absence of an external magnetic field and gapless
Majorana fermions moving in the static background field of
the vortices. Perhaps more interestingly, these excitations can
be gapped into a topological phase exhibiting non-Abelian
anyonic statistics [14].
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FIG. 2. (Color online) (a) Energy per site and (b) magnetization
as a function of inverse bond dimension. Errors in the energy for the
largest value studied (D = 7) are of the order of 10−4. Magnetization
values are normalized to 1.

From both Kitaev’s seminal paper [14] as well as later
work [42] it can be gathered that the energy per site for
this model at the equal coupling limit considered here is
Esite = −0.3936 independent of the nature of the couplings,
i.e., for both ferromagnetic as well as antiferromagnetic
couplings. Our best variational approximations to the energy
per site are EFM

site = −0.3931 and EAFM
site = −0.3933 with a

bond dimension D = 7 (χ = 60), yielding good agreement
with the exact value (see Fig. 2).

A feature of the Kitaev model is that the ground state
is known to be a Z2 spin liquid and as such develops
no local order parameter. In our case, we find variational
states exhibiting a strongly suppressed magnetization, with
the largest values of the magnetization being around 0.03
and 0.02 in the ferromagnetic and antiferromagnetic cases,
respectively, with a bond dimension D = 4. The level of
symmetry breaking is observed to decrease in general as a
function of increasing D (entanglement), and for our best
variational states the magnetization reaches a minimum of
approximately 0.02 for the ferromagnetic case and 0.01 for
the antiferromagnetic case, with D = 7. See Eqs. (4)–(8) for
our definition of magnetization as well as similar magnetic
order parameters.

The fact that the model is strongly frustrated and exhibits
gapless excitations turns it into a formidable challenge for
numerical methods in general. In what follows, we will show
that iPEPS ansatz wave functions are capable of capturing
the essential features of this model quite well, even in the
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observables. In this scheme, the contraction of the infinite bra
and ket tensor networks surrounding a unit cell is effectively
represented by introducing a boundary made up of so-called
environment tensors (see Fig. 1). The environment tensors
are constructed via iterative absorption and renormalization
of unit-cell tensors into the boundary tensors in Fig. 1.
Importantly, the accuracy of the contraction is controlled by the
bond dimension of the environment tensors, usually denoted by
χ . For the data presented here, χ was chosen to be larger than
D2 in all cases and large enough to yield negligible variations
in the energies. For a more precise description of the details
involved in the contraction scheme, we refer the reader to
Ref. [34].

C. Optimization

Optimization of the tensors generating the ansatz wave
functions is typically performed using either direct energy
minimization or imaginary-time evolution. Here, we have used
the latter combined with the so-called full update scheme [23].
In the imaginary-time evolution procedure by starting from
some initial state |ψ0〉 of the form (2) we perform subsequent
projection steps

|ψk+1〉 = e−τ Ĥ |ψk〉
‖e−τ Ĥ |ψk〉‖

, (3)

so provided that the initial state |ψ0〉 had some overlap with
the ground state of the model enough iterations will eventually
converge to the ground state.

For the data presented it was observed that values below
τ = 0.01 for the imaginary-time evolution did not provide
a significant improvement in the quality of the data. In all
cases, the number of cumulative iterations was such that it
led to values of at least β = 20 and in all cases it was found
to be large enough to achieve convergence of the variational
energies. Here, we point out that lower-cost variants such as
the simple update [41], in which an explicit construction of
the environment is omitted, failed to yield good results in
the Kitaev limit and thus we opted for performing all the
simulations using the full update, in spite of its significantly
larger computational cost [23].
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In the limits ϕ = ±90◦, the model in Eq. (1) becomes the
well-known Kitaev honeycomb model [14] with equal bond
couplings (B phase). Indeed, even though the interactions on
each bond are of Ising type, the fact that different bonds
correspond to different quantization axes makes the Kitaev
model a highly frustrated one, even classically, since it is
impossible to satisfy all energy constraints simultaneously.
From the exact solution of the Kitaev model [14] it is known
that inside the B phase two different types of excitations
arise: magnetic vortices which are gapped and localized
in the absence of an external magnetic field and gapless
Majorana fermions moving in the static background field of
the vortices. Perhaps more interestingly, these excitations can
be gapped into a topological phase exhibiting non-Abelian
anyonic statistics [14].
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From both Kitaev’s seminal paper [14] as well as later
work [42] it can be gathered that the energy per site for
this model at the equal coupling limit considered here is
Esite = −0.3936 independent of the nature of the couplings,
i.e., for both ferromagnetic as well as antiferromagnetic
couplings. Our best variational approximations to the energy
per site are EFM

site = −0.3931 and EAFM
site = −0.3933 with a

bond dimension D = 7 (χ = 60), yielding good agreement
with the exact value (see Fig. 2).

A feature of the Kitaev model is that the ground state
is known to be a Z2 spin liquid and as such develops
no local order parameter. In our case, we find variational
states exhibiting a strongly suppressed magnetization, with
the largest values of the magnetization being around 0.03
and 0.02 in the ferromagnetic and antiferromagnetic cases,
respectively, with a bond dimension D = 4. The level of
symmetry breaking is observed to decrease in general as a
function of increasing D (entanglement), and for our best
variational states the magnetization reaches a minimum of
approximately 0.02 for the ferromagnetic case and 0.01 for
the antiferromagnetic case, with D = 7. See Eqs. (4)–(8) for
our definition of magnetization as well as similar magnetic
order parameters.

The fact that the model is strongly frustrated and exhibits
gapless excitations turns it into a formidable challenge for
numerical methods in general. In what follows, we will show
that iPEPS ansatz wave functions are capable of capturing
the essential features of this model quite well, even in the
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A. Computing the gradient

The objective function f that we want to minimize [see
Eq. (6)] is a real function of the complex-valued A, or,
equivalently, the independent variables A and Ā. The gradient
is then obtained by differentiating f (Ā,A) with respect to Ā,

grad = 2 × ∂f (Ā,A)
∂Ā

= 2 × ∂Ā 〈"(Ā)| H |"(A)〉
〈"(Ā)|"(A)〉

− 2 × 〈"(Ā)| H |"(A)〉
〈"(Ā)|"(A)〉2 ∂Ā〈"(Ā)|"(A)〉,

where we have clearly indicated A and Ā as independent
variables. In the implementation we will always make sure
the PEPS is properly normalized, such that the numerators
drop out. By subtracting from every term in the Hamiltonian
its expectation value, the full Hamiltonian can be redefined as

H → H − 〈"(Ā)|H |"(A)〉, (7)

such that the gradient takes on the simple form

grad = 2 × ∂Ā〈"(Ā)|H |"(A)〉.
The gradient is thus obtained by differentiating the energy
expectation value 〈"(Ā)| H |"(A)〉 with respect to every Ā
tensor in the bra level and taking the sum of all contributions.
Every term in this infinite sum is obtained by omitting one
Ā tensor and leaving the indices open. The full infinite

summation is then obtained by letting the Hamiltonian operator
and this open spot in the network travel through the channels
separately, just as in the case of the structure factor in Sec. II D.

Let us first define a new tensor that captures the infinite sum
of Hamiltonian operators acting inside a channel,

= + + + . . .

= ,

where the big tensor is again the inverted channel operator of
Eq. (4) with momentum zero. Because we have redefined the
Hamiltonian in Eq. (7), the inversion of the channel operator
is well defined, because the vector on which the inverse acts
has a zero component along the channel fixed point ρL.

With this blue tensor all different relative positions of the
Hamiltonian terms and the tensor Ā that is being differentiated
(the open spot) can be explicitly summed, similarly to the
expression for the structure factor [Eq. (5)]. There are a few
more terms because every Hamiltonian term corresponds to a
two-site operator and has different orientations.

The full expression is

grad = + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + + ,
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TABLE II. Ground-state energies (in units of J1) e(D,�)
and magnetization square m2(D,�) for D = 7, which can
be considered as upper bounds of the exact D ! 1 values.
The tensor was optimized up to an environment dimension
�opt = 3D2 = 147. The � ! 1 extrapolations are done from
environment bond dimensions � 2 [D2, 13D2].

J2/J1 e(7, 147) e(7,� ! 1) m2(7, 147) m2(7,� ! 1)
0.0 -0.669428 -0.669432 0.0994 0.0994
0.05 -0.649273 -0.649277 0.0926 0.0926
0.1 -0.629497 -0.629501 0.0852 0.0852
0.15 -0.610154 -0.610159 0.0771 0.0771
0.2 -0.591314 -0.591320 0.0685 0.0685
0.25 -0.573067 -0.573076 0.0591 0.0591
0.3 -0.555520 -0.555533 0.0491 0.0491
0.35 -0.538850 -0.538867 0.0383 0.0382
0.4 -0.523054 -0.523259 0.0270 0.0268
0.45 -0.508895 -0.508976 0.0173 0.0173
0.5 -0.496152 -0.496289 0.0086 0.0086

FIG. 6. Magnetization (square) as a function of the frustrat-
ing ratio J2/J1 as obtained from Fig. 5. The exact result for
J2 = 0 is shown [4]. For comparison, the variational Monte
Carlo calculations of Ref. [46] are also included.

raw data for D = 7 are also shown in Table II. In
the unfrustrated case, we get m

2(D = 7) = 0.0994 and
m

2(1) = 0.0948(2), to be compared with the exact value
m

2
QMC = 0.0942(2) [4]. In Fig. 5, we attempt both linear

and quadratic fits. As in the case of energy extrapola-
tions, we exclude the results with D = 2 from the fitting
procedure, since they are clearly o↵, especially for inter-
mediate and large values of J2/J1. According to our fits,
the linear one looks more trustable than the quadratic
one, which serves to give an upperbound to the value
of the magnetization. Within the linear fit, we observe
vanishing magnetization for J2/J1 ⇡ 0.46(1), giving rise
to a continuous transition to a magnetically disordered
phase, whose nature is beyond the scope of the present
work. We would like to emphasize that the results for
J2/J1 = 0.5 are clearly incompatible with a smooth be-

FIG. 7. Longitudinal correlation length ⇠L, as extracted
from the spin-spin correlations, as a function of the transverse
one ⇠ for di↵erent values of J2/J1 at D = 3, . . . , 7 (denoted
by triangles, hexagons, pluses, diamonds, and crosses in the
same order).

havior in 1/⇠, strongly suggesting that at this point the
ground state is already outside the magnetically-ordered
phase. The final magnetization curve is shown in Fig. 6.
For comparison, the variational Monte Carlo calcula-
tions, which have been obtained by using Gutzwiller-
projected fermionic states, are also shown [46]. In the
latter case, a quantum critical point for J2/J1 ⇡ 0.48,
separating the antiferromagnetic phase and a gapless spin
liquid, has been reported. The present results are ex-
pected to improve the accuracy of the magnetization
(e.g., the accuracy of m

2 for the unfrustated case is
smaller than 1%). Still, these two independent calcula-
tions give very similar behavior, with almost compatible
values for the location of the quantum critical point. We
would like to mention that, recent numerical calculations,
including DMRG [19], neural-network approaches (based
upon restricted Boltzmann machines on top of fermionic
states) [21], and finite size PEPS calculations [47] also
pointed out that the Néel phase survives up to J2/J1 in
the range 0.45÷ 0.47, a value that is considerably larger
than the one predicted by linear spin-wave theory [48].
Finally, we would like to comment on the J2-

dependence of the correlation length, which is clearly
di↵erent at small (i.e. D = 2, 3) and larger (i.e. D =
4, · · · , 7) bond dimensions. A possible explanation of the
rapid increase of ⇠, for D = 2 and 3, when approach-
ing the critical point, may be attributed to the fact that,
for these very small bond dimensions, the antiferromag-
netic state is poorly approximated as a “dressed” prod-
uct state, having a finite magnetization but lacking the
correct transverse (Goldstone) fluctuations. When ap-
proaching the phase transition, the magnetization de-
creases and the state starts to build up long-range en-
tanglement (for D = 3 a short-range resonating-valence
bond state can be constructed [49]). Therefore, a larger

U(1) symmetric tensor + correlation length extrapolation + automatic differentiation
 See also DMRG level-spectroscopy (Wang, Sandvik ’18) 

RBM*pair product state VMC (Nomura, Imada ’20) 
 finite PEPS VMC (Liu et al ’20) 
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The nature of quantum spin liquids is studied for the spin-1/2 antiferromagnetic Heisenberg model on a square lattice
containing exchange interactions between nearest-neighbor sites, J1, and those between next-nearest-neighbor sites, J2.
We perform variational Monte Carlo simulations together with the quantum-number-projection technique and clarify the
phase diagram in the ground state together with its excitation spectra. We obtain the nonmagnetic phase in the region
0.4 < J2/J1 ¯ 0.6 sandwiched by the staggered and stripe antiferromagnetic (AF) phases. Our direct calculations of the
spin gap support the notion that the triplet excitation from the singlet ground state is gapless in the range of 0.4 <
J2/J1 ¯ 0.5, while the gapped valence-bond-crystal (VBC) phase is stabilized for 0.5 < J2/J1 ¯ 0.6. The VBC order is
likely to have the columnar symmetry with a spontaneous symmetry breaking of the C4v symmetry. The power-law
behaviors of the spin–spin and dimer–dimer correlation functions in the gapless region are consistent with the emergence
of the algebraic quantum-spin-liquid phase (critical phase). The exponent of the spin correlation hSð0ÞSðrÞi / 1=rzþ! at a
long distance r appears to increase from z + © ³ 1 at J2/J1 ³ 0.4 toward the continuous transition to the VBC phase at
J1/J1 ³ 0.5. Our results, however, do not fully exclude the possibility of a direct quantum transition between the
staggered AF and VBC phases with a wide critical region and deconfined criticality.

1. Introduction

In the presence of strong geometrical frustration and
quantum fluctuations, insulators without any long range
order, i.e., quantum spin liquid (SL) states, may appear even
at zero temperature. One of the simplest models proposed for
the quantum spin liquid state is a spin 1/2 antiferromagnetic
J1–J2 Heisenberg model on a square lattice (Fig. 1). The
variables J1 and J2 denote the nearest- and next-nearest-
neighbor interactions, respectively. In the small-J2 region,
just as in the Heisenberg model on a square lattice, the
ground state is widely believed to have the staggered
antiferromagnetic (AF) long-ranged order with a Bragg peak
at q ¼ ð";"Þ in the spin structure factor. On the other hand,
when J2 becomes comparable to J1, the stripe AF long-range
order with Bragg peaks at q ¼ ð0;"Þ and ð"; 0Þ in the spin
structure factor is stabilized. In the intermediate region,
J2 % J1=2, geometrical frustration and quantum fluctuations
have been proposed to suppress the long-range magnetic and
valence-bond-crystal (VBC) orders.1–10)

There are several high-precision numerical methods of
obtaining the ground states of strongly correlated electron
systems. Among others, the variational Monte Carlo (VMC)
method based on the fermionic resonating-valence-bond
(RVB) state is a powerful tool for examining the quantum
spin liquid states. More recently, Hu et al. have investigated
the J1–J2 Heisenberg model by the VMC method together
with the Lanczos technique and reported that the energy gap
between the ground state and the triplet excited state with the
total momentum K ¼ ð"; 0Þ closes in the range of 0:48 &
J2=J1 & 0:6.6)

The density matrix renormalization group (DMRG)
method is a highly accurate numerical technique. It is
originally developed for one-dimensional electron systems
and has recently been applied to two-dimensional ones under
the cylindrical boundary condition. Jiang et al. have revisited

the ground-state properties of the J1–J2 Heisenberg model
by using the DMRG method.7) They have reported a spin-
gapped quantum spin liquid phase in the range of 0:41 &
J2=J1 & 0:62. The quantum spin liquid state is characterized
by the absence of long-range magnetic and dimer orders. In
contrast to these results, Gong et al. showed a gapless region
without any magnetic and VBC orders in the range of
0:44 < J2=J1 < 0:5 using DMRG with SU(2) spin rotation
symmetry.8)

In various numerical results, the intermediate region 0:4 .
J2=J1 . 0:6 has been interpreted as the spin liquid phase with
either gapless4,6,8) or gapful5,7,9) triplet excitations. However,
it has also been alternatively interpreted by the deconfine-
ment criticality, where a novel quantum criticality dominated
by the deconfinement of magnons emerges at the critical
point between the AF and stripe AF (or VBC) phases. In this
proposal, the spin liquid phase does not exist in the ground
state, but the liquid emerges only at the critical point; in other
words, the parameters away from the critical point always
belong to either of the ordered phases in a strict sense.

It has also been proposed that the intermediate phase
contains VBC phases including the columnar order1,2,11–13)

Fig. 1. Lattice structure of the antiferromagnetic J1–J2 Heisenberg model
on a square lattice. At J2 ¼ 0, the structure is a simple square lattice. We use
the periodic–periodic boundary condition.
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RG equation of the GILT-HOTRG,

Ac =
A

A

ww
†

QAl QAr

QBl QBr

A

A

v
†

v

Q
0
Bu

Q
0
Bd

Q
0
Au

Q
0
Ad

.

(37)

The computational cost of the GILT-HOTRG is O(�7),
the same as the HOTRG.
The coarse graining defined in Eq. (37) is able to sim-

plify the A
CDL tensor in Fig. 3(b) to a single number,

GILT-HOTRG
���������!

0

@

1

A
4

. (38)

Equation (38) shows that the GILT-HOTRG can success-
fully filter out the local correlations among the spin vari-
ables around the corners at the lattice scale (see Fig. 3(b)).
Since the CDL tensors are no longer fixed points for the
RG equation of the GILT-HOTRG, the peculiar fixed
lines in Fig. 4(b) generated by the HOTRG will collapse
to fixed points; we expect the RG equation of the GILT-
HOTRG is able to exhibit the critical fixed point tensor
shown schematically in Fig. 4(a).

D. Gauge fixing and linearization for the
GILT-HOTRG

We show how the gauge is fixed and give the explicit
expression of the linearized RG equation for the GILT-
HOTRG in this subsection.

Part of the gauge can be fixed if the physical model pos-
sesses a global internal symmetry. The global symmetry
can be incorporated into the tensor network representa-
tion of the model [38–40]; it is a generalization of Schur’s
lemma from matrices to general tensors. For the 2D Ising
model, Z2 symmetry can be imposed. Each index of the
tensor A breaks into even and odd sectors. Half of the
gauge is fixed since A is in the bases where the states
in the even sector transform trivially and the states in
the odd sector is multiplied by �1 under the spin flip
operation.

Most of the remaining gauge in the degenerate sectors
of A can be fixed by going to the diagonal bases of the
tensor. We show how the Sx gauge redundancy in Eq. (25)
is fixed. The Sy one can be dealt with in the same way.
Given a tensor A, we first contract its two vertical legs

to produce a transfer matrix Nx,

Nx = A . (39)

We then find the eigenvalue decomposition of this matrix,

Nx =
W

�1
xWx �

, (40)

where � is the diagonal matrix encoding eigenvalues. The
gauge fixing transformation in the horizontal direction is
defined by acting the invertible matrix Wx and its inverse
on the horizontal legs of the tensor A,

A
horizontal

�������!
gauge fixing

A

W
�1
x Wx

. (41)

To see why the gauge fixing procedure in Eqs. (39) to (41)
defines a preferred set of bases, let us examine how the
tensor Ã in Eq. (25) transforms under this gauge fixing
procedure. The contraction of two vertical legs of Ã

annihilates Sy and S
�1
y in the right hand side of Eq. (25b);

the resultant Ñx is related to Nx through

Ñx = NxSx S
�1
x . (42)

It is straightforward to see that the matrix W̃x coming
from eigenvalue decomposition of the matrix Ñx is related
to Wx through

W̃x

=
Wx

Sx

dx
, (43)

where dx is a diagonal matrix coming from phase ambigu-
ities of eigenvectors, with its diagonal entries to be phases
for general complex matrices. For a real symmetric Nx,
the diagonal entries of dx are ±1. After the horizontal
gauge fixing, the tensor Ã becomes

Ã

horizontal
�������!
gauge fixing

A

W
�1
x Wxdx dx

Sy

S
�1
y

. (44)

Compare Eq. (41) with Eq. (44), we see that the gauge
redundancies in two horizontal legs are fixed except the
phase ambiguities. For 2D classical statistical models
with spatial reflection symmetries, for example, the 2D
Ising model, the real matrix Nx can be made symmetric,
so the phase ambiguities become sign ambiguities.
The gauge fixing procedure described in Eqs. (39)

to (41) is general for all TRG-type techniques. However,
this procedure is not necessary for the GILT-HOTRG

2

site local tensor A with a new tensor B which is yet to be
determined, and then build up a Bloch state using translation
operator [5, 14]. This type of excited states corresponds to
one-particle excitation, and has been shown to work well for
a broad range of models [28–30]. Hereafter we only consider
this case, and briefly discuss the generalization to many quasi-
particles in the end.

The excitation ansatz takes the following form:

|�k(B)i =
N�1X

j=0

e�ikj T̂ j
B A . . . A

s1 s2 . . . sN

, (2)

where tensor B contains all the variational parameters for
excited state. |�k(B)i then is an eigenstate of transla-
tion operator with eigenvalue eik, where momentum k =
2⇡m/N,m = 0, 1, . . . , N � 1. Due to momentum super-
position, a summation of N different tensor diagrams ap-
pears in Eq. (2), which will be our main focus. Since
|�k(B)i depends on tensor B linearly, variationally opti-
mizing B boils down to a generalized eigenvalue problem:
Hµ⌫B

⌫ = ENµ⌫B
⌫ , where E is the generalized eigenvalue,

and H (N) is the effective Hamiltonian (norm) matrix in the
variational space, with Hµ⌫ = @

2

@B
µ
@B⌫ h�k(B)|Ĥ|�k(B)i,

Nµ⌫ = @
2

@B
µ
@B⌫ h�k(B)|�k(B)i. Here B is complex conju-

gate of B, whose component after vectorization is denoted as
B

⌫ . Since momentum is a good quantum number, we have
suppressed the dependence of H,N, E, and B on momentum
k in the generalized eigenvalue equation. Solving the gen-
eralized eigenvalue equation in each momentum sector, one
recovers the low-energy spectrum [31].

To construct H and N, one needs to sum over N differ-
ent tensor diagrams for each (employing translation invariance
and MPO representation of the Hamiltonian Ĥ are assumed).
These extensive tensor diagram summations are the main ob-
stacles of computing the excitation ansatz, rendering manip-
ulating excited states unfavorable. Below we introduce our
formalism based on simple yet powerful generating functions
with the following strategy: to compute H or N, we will first
construct a suitable generating function, and then use AD to
compute the derivative [25], which will reproduce H or N

and is much simpler than directly summing all diagrams. In
this way, we will get rid of all the tensor diagram summations,
making it possible to investigate detailed properties of excited
states. Note that, unlike generating functionals in QFT, whose
closed-form expressions are rare, the TN generating functions
and their derivatives can be computed numerically exact, ben-
efited from AD. We find that, depending on the origins of di-
agrammatic summation, the generating functions can be di-
vided into two classes, one for TN state and the other for TN
operators, which we introduce separately.

Generating function for state – As shown in Eq. (2), the
extensive tensor diagrams only differ by the location of ten-
sor B and a position dependent phase factor. It is insight-
ful to make the following observation: for a given tensor B,
the excitation ansatz Eq. (2) can be expressed as: |�k(B)i =

@

@�
|G�(�)i

���
�=0

, with

|G�(�)i = . . .

s1 s2 s3 . . . sN�1 sN

, (3)

where the tensor on the j-th site in |G�(�)i is given by
Aj(�) = A + �e�ik(j�1)B, � 2 R, represented by blue
squares. Here, to simplify the notation, we have suppressed
the dependence of |G�(�)i on tensor A,B and momentum
k, keeping only �-dependence explicitly. Expanding |G�(�)i
into power series of �, we find that the ground (excited) state
| (A)i (|�k(B)i) is contained in the zeroth (first) order term,
both of which lie in the tangent space of the MPS manifold,
while higher order terms are outside of the tangent space due
to nonlinearity in tensor B [32]. Thus, we can eliminate the
tensor diagram summation in |�k(B)i by computing the first
order derivative of |G�(�)i. It is interesting to point out that,
Eq. (3) bears a similarity with the generating functional in
QFT. In the latter case, through introducing source field cou-
pled to the original field and subsequently taking functional
derivative with respect to source field at vanishing point, one
obtains correlation functions of the original field [20]. In
Eq. (3), the parameter � can be viewed as such a source field.
Note also that, although the ground state MPS and excitation
ansatz are translationally invariant, the generating function
|G�(�)i is in general not invariant under one-site translation,
except at momentum k = 0.

With |G�(�)i, the norm square of excited state
can be expressed as |||�i||2 ⌘ h�k(B)|�k(B)i =

@
2

@�0@� hG�(�0)|G�(�)i
���
�0=�=0

. Using translation invariance
of |�k(B)i, we can lower the order of derivative to first order,
by introducing a new generating function for the excited state
norm:

G||�||(�) =

. . .

B A A . . . A A

, (4)

with which, the norm square can be obtained as |||�i||2 =

N @

@�
G||�||(�)

���
�=0

. Here, the local tensor on site-j of the ket
layer is Aj(�), the same as appearing in Eq. (3).

Before proceeding further, it is helpful to discuss how to
use generating functions in practice. Taking Eq. (4) as an ex-
ample, we first compute G||�||(� = 0) by contracting the net-
work in a conventional manner with computational complex-
ity O(D5), and then take a back-propagation using AD, with
which the first order derivative at � = 0 is obtained automat-
ically, hence the norm square [25]. Since the computational
complexity of AD grows with the order of derivative, it is ad-
visable to utilize a generating function with which low order
derivative suffices.

With Eq. (4), it is straightforward to find that, the generating

=
∂ |G(λ)⟩

∂λ λ=0

iPEPS excitations 
Ponsioen et al, 2107.03399 
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. . .

...

...

. . .

Figure 1: Schematic picture of an excitation tensor in the center of an infinite PEPS.

The goal is now to find the optimal variational parameters in tensor B with the A tensors
kept fixed. Minimizing the energy under the constraint that the wavefunction is normalized
writes

ˆ

ˆB†
[È�(B)k| H |�(B)kÍ ≠ Êk(È�(B)k |�(B)kÍ ≠ 1)] = 0. (3)

The first term corresponds to the triple infinite sum

ˆ

ˆB†

e
�(B†)k

---H
---�(B)k

f
= ˆ

ˆB†

ÿ

x1,x2,j

eik·(≠x1+x2))
e
�(B†)x1

---hj

---�(B)x2

f
, (4)

where H ©
q

j
hj refers to a summation of local Hamiltonian terms on di�erent bonds j.

We can rewrite the expectation value
e
�(B†)k

---H
---�(B)k

f
as B̨

†
HkB̨, defining the e�ective

Hamiltonian matrix, Hk, which corresponds to the tensor network representing this expec-
tation value with the B and B† tensors removed and reshaped into a matrix, and with B̨

and B̨
† being the tensors B and B† reshaped into vectors, respectively. In a similar fashion,

we can define an e�ective norm matrix, Nk, with È�(B†)k|�(B)kÍ = B̨
†
NkB̨, involving a

double-infinite sum. Solving Eq. 3 boils down to solving the generalized eigenvalue problem
for B̨,1

HkB̨ = ÊkNkB̨. (5)

The main technical challenge is to evaluate the triple infinite sum in Eq. 4. Taking the
derivative with respect to the B† tensor removes the tensor from the network, leaving a ”hole”
in its place. Thus, after taking the derivative we have an infinite sum over the location of the
B tensor, the Hamiltonian terms, and the location of the hole. By exploiting translational
invariance we can eliminate one of these sums. In the previous implementations in Refs. [24,25]
the sum is taken over the former two, with the location of the hole fixed at the center. Here we
adopt a di�erent strategy, namely that we eliminate the sum over Hamiltonian terms instead,
which has the advantage that the summation of 2-body terms (which is technically more
challenging and computationally more expensive than the summation over the B tensors) can
be avoided. The question is then how the summation over the hole can be performed. While
this summation could be implemented in a manual fashion as done in Ref. [34] for ground

1In practice, we need to restrict the B tensor to a subspace in which the modes with small norm have been
removed. We discuss the dependence on the subspace size in Appendix B.

4

Gradients might appear more often than you’ve thought! 
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Eigensolver/SVD

Fixed point iteration

Xie, Liu, LW, PRB ‘20

Dominant or truncated  
Eigensolver/SVD https://buwantaiji.github.io/2020/01/AD-of-truncated-SVD/

http://implicit-layers-tutorial.org/implicit_functions/

AD of complex-valued SVD, Wan and Zhang, 1909.02659
Degenerated eigenvalues: https://github.com/google/jax/issues/669

https://math.mit.edu/~stevenj/18.336/adjoint.pdf

https://arxiv.org/abs/1909.02659
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FIG. 1. Illustration of the three common steps of hybrid quantum-classical algorithms. These steps have

to be repeated until convergence or when a su�ciently good quality of the solution is reached. 1) State

preparation involving the quantum hardware capable of tunable gates characterized by parameters “n (blue),

2) measurement of the quantum state and evaluation of the objective function (red), 3) iteration of the

optimization method to determine promising changes in the state preparation (green). Notice that a single

parameter “n may characterize more than one gate, for example see “1 and “6 in the blue box. In practice,

many state preparations and measurements are necessary before proceeding with a single update of the

parameters.

quantum state, records the outcomes and analyze them to obtain the value of the objective function

corresponding to the prepared state. The third step is the classical optimization iteration that,

based on previous results, suggests new parameter values to improve the quality of the state. We

pictorially illustrate these three parts and their interplay in Fig. 1.

As mentioned, the goal of variational algorithms is to find an approximate solution to certain

problems. The quality of such approximation is given by the value of the objective function that one

desires to maximize (or minimize). The objective function is expressed as a quantum observable,

noted here with Ĉ, of the qubit register. It can be a genuinely quantum quantity, as is the case

for the energy of molecular systems, or classical in nature, for example when it is associated to

combinatorial optimization, scheduling problems or financial modeling. Given the quantum register

in state |„Í, the objective function is given by the expectation value È„| Ĉ |„Í.

⟨H⟩θ
Peruzzo et al,  

Nat. Comm. ’13 
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Scan the single  
variational parameter

Stochastic perturbation of  
30 variational parameters

are computed with Gaussian process regression [47], which
interpolates the energy surface based on local errors from
the shot-noise-limited expectation value measurements in
Fig. 2(a).
Errors in our simulation as a function of R are shown in

Fig. 3(b). The curve in Fig. 3(b) becomes nearly flat past
R ¼ 2.5 Å because the same angle is experimentally
chosen for each R past this point. Note that the exper-
imental energies are always greater than or equal
to the exact energies due to the variational principle.
Figure 3(b) shows that VQE has substantial robustness to
systematic errors. While this possibility had been pre-
viously hypothesized [23], we report the first experimen-
tal signature of robustness and show that it allows for a
successful computation of the dissociation energy. By
performing (inefficient) classical simulations of the circuit
in Fig. 1, we identify the theoretically optimal value of θ at
each R. In fact, for this system, at every value of R there
exists θ such that EðθÞ ¼ E0. However, due to experi-
mental error, the theoretically optimal value of θ differs
substantially from the experimentally optimal value of θ.
This can be seen in Fig. 3(b) from the large discrepancy
between the green diamonds (experimental energy errors
at theoretically optimal θ) and the red dots (experimental
energy errors at experimentally optimal θ). The exper-
imental energy curve at theoretically optimal θ shows an
error in the dissociation energy of 1.1 × 10−2 hartree,
which is more than an order of magnitude worse. One
could anticipate this discrepancy by looking at the raw
data in Fig. 2(a), which shows that the experimentally
measured expectation values deviate considerably from
the predictions of theory. In a sense, the green diamonds
in Fig. 3(b) show the performance of a nonvariational

algorithm, which in theory gives the exact answer, but in
practice fails due to systematic errors.

III. PHASE ESTIMATION ALGORITHM

We also report an experimental demonstration of the
original quantum algorithm for chemistry [2]. Similar to
VQE, the first step of this algorithm is to prepare the system
register in a state having good overlap with the ground state
of the Hamiltonian H. In our case, we begin with the
Hartree-Fock state jϕi. We then evolve this state under H
using a Trotterized approximation to the time-evolution
operator. The execution of this unitary is controlled on an
ancilla initialized in the superposition state ðj0iþ j1iÞ=

ffiffiffi
2

p
.

The time-evolution operator can be approximated using
Trotterization [34] as

e−iHt ¼ e−it
P

γ
gγHγ ≈UTrotðtÞ≡

"Y
γ
e−igγHγ t=ρ

#
ρ
; ð5Þ

where the Hγ are local Hamiltonians as in Eq. (1) and the
error in this approximation depends linearly on the time
step ρ−1 [34]. Application of the propagator induces a
phase on the system register so that

e−iHtjϕi ¼
"X

n

e−iEntjnihnj
#
jϕi ¼

X

n

ane−iEntjni; ð6Þ

where jni are eigenstates of the Hamiltonian such that
Hjni ¼ Enjni and an ¼ hnjϕi. By controlling this evolu-
tion on the ancilla superposition state, one entangles the
system register with the ancilla. Accordingly, by measuring
the phase between the j0i state and j1i state of the ancilla,

FIG. 2. Variational quantum eigensolver: raw data and computed energy surface. (a) Data showing the expectation values of terms in
Eq. (1) as a function of θ, as in Eq. (3). Black lines nearest to the data show the theoretical values. While such systematic phase errors
would prove disastrous for PEA, our VQE experiment is robust to this effect. (b) Experimentally measured energies (in hartree) as a
function of θ and R. This surface is computed from (a) according to Eq. (4). The white curve traces the theoretical minimum energy; the
values of theoretical and experimental minima at each R are plotted in Fig. 3(a). Errors in this surface are given in Fig. 6.
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the case of H2, remove two qubits associated with the spin–parity 
 symmetries, reducing the Hamiltonian to a six-qubit problem that 
encodes eight spin orbitals. A similar approach is used to map LiH 
onto four qubits. The Hamiltonians for H2, LiH and BeH2 at their 
 lowest-energy interatomic distances (bond distance) are given  explicitly 
in Supplementary Information.

The results from an optimization procedure are illustrated in Fig. 2, 
using the Hamiltonian for BeH2 at the interatomic distance of 1.7 Å. 
Although using a large number of entanglers UENT helps to achieve 
better energy estimates in the absence of noise, the combined effect 
of decoherence and finite sampling sets the optimal depth for opti-
mizations on our quantum hardware to 0–2 entanglers. The results 
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Figure 2 | Experimental implementation of six-qubit optimization. The 
minimum energy of the six-qubit Hamiltonian describing BeH2 with an 
interatomic distance of l =  1.7 Å (data points) is plotted along with the 
exact value (black dashed line). For each iteration k, the gradient at each 
control θk is approximated using 1,000 samples for energy estimation  
at θ+k  (blue) and θ−k  (red), which are perturbations to θk along opposite 
directions of a random axis in parameter space. The error bars correspond 
to the standard error of the mean. The inset shows the simultaneous 

optimization of 30 Euler angles that control the trial state preparation. 
Each colour refers to a particular qubit (Q1–Q6; q =  1, 2, …), following the 
colour scheme in Fig. 1. The final energy estimate (green dashed line) is 
obtained using the average angle over the last 25 angle updates (indicated 
by the green dotted arrow), to mitigate the effect of stochastic fluctuations, 
and with a higher number of samples (100,000), to obtain a more accurate 
energy estimation.
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Figure 3 | Application to quantum chemistry. a–c, Experimental results 
(black filled circles), exact energy surfaces (dotted lines) and density plots 
(shading; see colour scales) of outcomes from numerical simulations, 
for several interatomic distances for H2 (a), LiH (b) and BeH2 (c). The 
experimental and numerical results presented are for circuits of depth 
d =  1. The error bars on the experimental data are smaller than the 
size of the markers. The density plots are obtained from 100 numerical 

outcomes at each interatomic distance. The top insets in each panel 
highlight the qubits used for the experiment and the cross-resonance 
gates (arrows, labelled CRc–t; where ‘c’ denotes the control qubit and ‘t’ the 
target qubit) that constitute UENT. The bottom insets are representations 
of the molecular geometry (not to scale). For all the three molecules, 
the deviation of the experimental results from the exact curves is well 
explained by the stochastic simulations.
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Parametrized gate of the form

e− iθ
2 Σ Σ2 = 1 with

e.g., X, Y, Z, CNOT, SWAP…
∇⟨H⟩θ = (⟨H⟩θ+π/2 − ⟨H⟩θ−π/2)/2

Li et al, PRL ’17, Mitarai et al, PRA  ’18       
Schuld et al, PRA ’19, Crooks, ’19…

Differentiable1 quantum circuits
measure gradient on real device

Same complexity as forward mode automatic differentiation



Differentiable2 quantum circuits
compute gradient in classical simulations

Unfortunately, forward mode is slow 
Reverse mode is memory consuming



Quantum circuit computation graph

ℒ|x1⟩ |x2⟩

U1

|xN⟩. . .|x0⟩

U2 UN

The same “comb graph” as the feedforward neural network,  
except that quantum computing is reversible

Quantum 
state

Unitaries

O(1) memory AD for reversible neural nets Gomez et al, 1707.04585 Chen et al, 1806.07366



U |x⟩

|x⟩

forward

|y⟩

→ |y⟩

backward

U ←

|y⟩← U†“uncompute”

⟨x |

adjoint 
for mat-vec 

multiply

Reversible AD for variational quantum circuits*

All are in-place operations without caching

*GRAPE type algorithm on the level of circuits

|x⟩ ← |y⟩U†



Train a 10,000 layer, 
300,000 parameter 
circuit on a laptop

https://yaoquantum.org/

according to Wirtingers derivative [53] for com-
plex numbers, where L is a real-valued objective
function that depends on the final state. Start-
ing from L = 1 we can obtain the adjoint of the
output state.

To pull back the adjoints through the compu-
tational graph, we perform the backward calcu-
lation [54]

. . .

|ÂkÍ = U †
k
|Âk+1Í

|ÂkÍ = U †
k
|Âk+1Í

. . .

(2)

The two equations above are implemented
Yao.AD with the apply_back! method. Based
on the obtained information, we can compute the
adjoint of the gate matrix using [54]

Uk = |Âk+1ÍÈÂk|. (3)

This outer product is not explicitly stored as a
dense matrix. Instead, it is handled efficiently by
customized low rank matrices described in Ap-
pendix E. Finally, we use mat_back! method to
compute the adjoint of gate parameters ◊k from
the adjoint of the unitary matrix Uk.

Figure 6 demonstrates the procedure in a con-
crete example. The black arrows show the for-
ward pass without any allocation except for the
output state and the objective function L. In the
backward pass, we uncompute the states (blue
arrows) and backpropagate the adjoints (red ar-
rows) at the same time. For the block de-
fined as put(nbit, i=>chain(Rz(–), Rx(—),
Rx(“))), we obtain the desired –, — and “ by
pushing the adjoints back through the mat func-
tions of PutBlock and ChainBlock. The imple-
mentation of the AD engine is generic so that
it works automatically with symbolic computa-
tion. We show an example of calculating the
symbolic derivative of gate parameters in Ap-
pendix G. One can also integrate Yao.AD with
classical automatic differentiation engines such as
Zygote to handle mixed classical and quantum
computational graphs, see [55].

Listing 9: 10000-layer VQE⌥ ⌅
julia> using Yao, YaoExtensions

julia> n = 10; depth = 10000;

julia> circuit = dispatch!(
variational_circuit(n, depth),
:random);

julia> gatecount(circuit)
Dict{Type{#s54} where #s54 <:

AbstractBlock,Int64} with 3 entries:
RotationGate{1,Float64,ZGate} => 200000
RotationGate{1,Float64,XGate} => 100010
ControlBlock{10,XGate,1,1} => 100000

julia> nparameters(circuit)
300010

julia> h = heisenberg(n);

julia> for i = 1:100
_, grad = expect�(h, zero_state(n)=>

circuit)
dispatch!(-, circuit, 1e-3 * grad)
println("Step $i, energy = $(expect(

h, zero_state(n)=>circuit))")
end⌃ ⇧

To demonstrate the efficiency of Yao’s AD en-
gine, we use the codes in Listing 9 to simulate
the variational quantum eigensolver (VQE) [56]
with depth 10, 000 (with 300, 010 variational pa-
rameters) on a laptop. The simulation would
be extremely challenging without Yao, either due
to overwhelming memory consumption in the re-
verse mode AD or unfavorable computation cost
in the forward mode AD.

Here, variational_circuit is predefined in
YaoExtensions to have a hardware efficient ar-
chitecture [57] shown in Fig. 9. The dispatch!
function with the second parameter specified to
:random gives random initial parameters. The
expect function evaluates expectation values of
the observables; the second argument can be a
wave function or a pair of the input wave func-
tion and circuit ansatz like above. expect� eval-
uates the gradient of this observable for the in-
put wave function and circuit parameters. Here,
we only make use of its second return value.
For batched registers, the gradients of circuit pa-
rameters are accumulated rather than returning
a batch of gradients. dispatch!(-, circuit,
...) implements the gradient descent algorithm

9
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• Differentiable programming quantum circuits 
• Batch parallelization with GPU acceleration 
• Quantum block intermediate representation
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Goodfellow, Bengio, Courville, http://www.deeplearningbook.org/
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Magic of learning representations
Neural style transfer
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Generative Pre-Training appears to be a 
successful way in learning good representations
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belief net
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Representation learning: what and how ?

What is a good representation ?

Towards a Definition of
Disentangled Representations

Irina Higgins
⇤
, David Amos

⇤
, David Pfau, Sebastien Racaniere,

Loic Matthey, Danilo Rezende, Alexander Lerchner

DeepMind

{irinah,davidamos,pfau,sracaniere,
lmatthey,danilor,lerchner}@google.com

December 7, 2018

How can intelligent agents solve a diverse set of tasks in a data-efficient
manner? The disentangled representation learning approach posits that such
an agent would benefit from separating out (disentangling) the underlying
structure of the world into disjoint parts of its representation. However, there
is no generally agreed-upon definition of disentangling, not least because it is
unclear how to formalise the notion of world structure beyond toy datasets
with a known ground truth generative process. Here we propose that a
principled solution to characterising disentangled representations can be found
by focusing on the transformation properties of the world. In particular,
we suggest that those transformations that change only some properties of
the underlying world state, while leaving all other properties invariant, are
what gives exploitable structure to any kind of data. Similar ideas have
already been successfully applied in physics, where the study of symmetry
transformations has revolutionised the understanding of the world structure.
By connecting symmetry transformations to vector representations using the
formalism of group and representation theory we arrive at the first formal
definition of disentangled representations. Our new definition is in agreement
with many of the current intuitions about disentangling, while also providing
principled resolutions to a number of previous points of contention. While
this work focuses on formally defining disentangling – as opposed to solving
the learning problem – we believe that the shift in perspective to studying
data transformations can stimulate the development of better representation
learning algorithms.
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“What I can not create, I do not understand”
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Generated Arts

https://www.christies.com/Features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx

can deal practically with approximationmethods
for the graph isomorphism problem.
Additionally, improved sequence generation

models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
termpatterns.Morework is neededonRiemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer newways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to designmatter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generativemodels produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful

closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to AI-enabled auto-
mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of themeth-
odologies summarized in this work.

REFERENCES AND NOTES

1. Royal Geographical Society, 21st Century Challenges (2015);
https://21stcenturychallenges.org/challenges/.

2. D. Segal, Materials for the 21st Century (Oxford Univ. Press,
2017).

3. M. C. Scharber et al., Adv. Mater. 18, 789–794 (2006).
4. E. O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli,

J. Aguilera-Iparraguirre, A. Aspuru-Guzik, Annu. Rev. Mater.
Res. 45, 195–216 (2015).

5. D. J. Newman, G. M. Cragg, J. Nat. Prod. 79, 629–661
(2016).

6. P. Kirkpatrick, C. Ellis, Nature 432, 823–823 (2004).
7. A. Mullard, Nature 549, 445–447 (2017).
8. J.-L. Reymond, Acc. Chem. Res. 48, 722–730 (2015).
9. A. M. Virshup, J. Contreras-García, P. Wipf, W. Yang,

D. N. Beratan, J. Am. Chem. Soc. 135, 7296–7303 (2013).
10. C. Qian, T. Siler, G. A. Ozin, Small 11, 64–69 (2015).
11. M. I. Jordan, T. M. Mitchell, Science 349, 255–260 (2015).
12. A. Aspuru-Guzik, R. Lindh, M. Reiher, ACS Cent. Sci. 4, 144–152

(2018).
13. P. B. Jørgensen, M. N. Schmidt, O. Winther, Mol. Inform. 37,

1700133 (2018).
14. E. Maine, E. Garnsey, Res. Policy 35, 375–393 (2006).
15. A. Aspuru-Guzik, K. Persson, Materials Acceleration Platform:

Accelerating Advanced Energy Materials Discovery by
Integrating High-Throughput Methods and Artificial Intelligence.
Mission Innovation (2018): Innovation Challenge 6.

16. T. Weymuth, M. Reiher, Int. J. Quantum Chem. 114, 823–837
(2014).

17. A. Zunger, Nat. Rev. Chem. 2, 0121 (2018).
18. C. Kuhn, D. Beratan, J. Phys. Chem. 100, 10595–10599

(1996).
19. J. R. Broach, J. Thorner, Nature 384 (suppl.), 14–16 (1996).
20. S. Hoelder, P. A. Clarke, P. Workman, Mol. Oncol. 6, 155–176

(2012).
21. D. Xiao, L. A. Martini, R. C. Snoeberger 3rd, R. H. Crabtree,

V. S. Batista, J. Am. Chem. Soc. 133, 9014–9022 (2011).
22. S. A. Lopez, B. Sanchez-Lengeling, J. de Goes Soares,

A. Aspuru-Guzik, Joule 1, 857–870 (2017).
23. I. Y. Kanal, S. G. Owens, J. S. Bechtel, G. R. Hutchison,

J. Phys. Chem. Lett. 4, 1613–1623 (2013).
24. J. Hachmann et al., Energy Environ. Sci. 7, 698–704 (2014).

Sanchez-Lengeling et al., Science 361, 360–365 (2018) 27 July 2018 5 of 6

Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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mated laboratories (88, 89).
The combination of inverse design tools with

active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.
As seen, central to machine learning meth-

odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.
The integration of machine learning as a new

pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
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Fig. 4. Schematic representation of several architectures found in
generative models. RNNs are used for sequence generation. The VAE
shows the semi-supervised variant, jointly trained by molecules (x) and
properties (y). Latent space is denoted with Z, and latent vectors with z.
In the GAN setting, the noise eventually acquires structure via the

adversarial training. Reinforcement learning (RL) shows a policy
gradient with MTCS in the task of SMILES completion with
arbitrary rewards. Shown in the lower right are hybrid architectures
such as AAE (adversarial autoencoders) and ORGAN, which represents
GAN and RL.
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
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e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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Neural Network Renormalization Group
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det
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We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]
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in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
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Quantum origin of the architecture
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FIG. 1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b) The squares
represent disentanglers: unitary maps that, from the moving-upward perspective, remove entan-
glement between two adjacent sites. (c) The triangles represent isometries: linear maps that, again
from the moving-upward perspective, coarse-grain two sites into one. Moving downward, we may
think of isometries as unitary operators that, in the MERA, map a state in V ⌦ |0i into V ⌦ V .
The i and j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 1. The quantum system being modeled by

the MERA lives at the bottom of the diagram, henceforth “the boundary” in anticipation of

the AdS/MERA connection to be explored later. We can think of the tensor network as a

quantum circuit that either runs from the top down, starting with a simple input state and

constructing the boundary state, or from the bottom up, renormalizing a boundary state via

coarse-graining. One defining parameter of the MERA is the rescaling factor k, defining the

number of sites in a block to be coarse-grained; in Fig. 1 we have portrayed the case k = 2.

The squares and triangles are the tensors: multilinear maps between direct products of vector

spaces. Each line represents an index i of the corresponding tensor, ranging over values from

1 to the “bond dimension” �. The boundary Hilbert space Hboundary = V
⌦Nboundary is given

by a tensor product of Nboundary individual spaces V , each of dimension �. (In principle
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Continuous normalizing flows
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Two training approaches
Maximum likelihood estimation
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Optimal Transport Theory
42 3 The founding fathers of optimal transport

minimize the total cost. Monge assumed that the transport cost of one
unit of mass along a certain distance was given by the product of the
mass by the distance.
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remblais
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Fig. 3.1. Monge’s problem of déblais and remblais

Nowadays there is a Monge street in Paris, and therein one can find
an excellent bakery called Le Boulanger de Monge. To acknowledge this,
and to illustrate how Monge’s problem can be recast in an economic
perspective, I shall express the problem as follows. Consider a large
number of bakeries, producing loaves, that should be transported each
morning to cafés where consumers will eat them. The amount of bread
that can be produced at each bakery, and the amount that will be
consumed at each café are known in advance, and can be modeled as
probability measures (there is a “density of production” and a “density
of consumption”) on a certain space, which in our case would be Paris
(equipped with the natural metric such that the distance between two
points is the length of the shortest path joining them). The problem is
to find in practice where each unit of bread should go (see Figure 3.2),
in such a way as to minimize the total transport cost. So Monge’s
problem really is the search of an optimal coupling; and to be more
precise, he was looking for a deterministic optimal coupling.

Fig. 3.2. Economic illustration of Monge’s problem: squares stand for production
units, circles for consumption places.

Monge problem (1781): How to transport earth with optimal cost ?

Monge Kantorovich Dantzig Brenier McCann VillaniOttoKoopmans

Nobel Prize in Economics ’75 Fields Metal ’10 Fields Metal ’18

Figalli

from Cuturi, Solomon NISP 2017 tutorial 
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number of bakeries, producing loaves, that should be transported each
morning to cafés where consumers will eat them. The amount of bread
that can be produced at each bakery, and the amount that will be
consumed at each café are known in advance, and can be modeled as
probability measures (there is a “density of production” and a “density
of consumption”) on a certain space, which in our case would be Paris
(equipped with the natural metric such that the distance between two
points is the length of the shortest path joining them). The problem is
to find in practice where each unit of bread should go (see Figure 3.2),
in such a way as to minimize the total transport cost. So Monge’s
problem really is the search of an optimal coupling; and to be more
precise, he was looking for a deterministic optimal coupling.
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units, circles for consumption places.
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= det ( ∂2u
∂zi∂zj )Monge-Ampère Equation

Brenier theorem (1991) z ↦ x = ∇u(z)the optimal map is
Under certain conditions



Monge-Ampère Flow 

∂ρ(x, t)
∂t

+ ∇ ⋅ [ρ(x, t)∇φ] = 0

Zhang, E, LW 1809.10188 

Drive the flow with an “irrotational” velocity field 
Impose symmetry to the scalar valued potential for symmetric 
generative model

φ(g x) = φ(x) ρ(g x) = ρ(x)⟹

wangleiphy/MongeAmpereFlow



Flow in the phase space: Hamiltonian dynamics

·p = − ∂H
∂q

·q = + ∂H
∂p

Hamiltonian equations

x = (p, q)

Phase space variables

Symplectic metric 

J = ( I
−I )

·x = ∇xH(x)J

Symplectic gradient flow

1815 × 2646 



Symplectic Integrators

from Hairer et al, Geometric Numerical Integration 

14 I. Examples and Numerical Experiments

Table 2.2. Data for the outer solar system

planet mass initial position initial velocity

−3.5023653 0.00565429
Jupiter m1 = 0.000954786104043 −3.8169847 −0.00412490

−1.5507963 −0.00190589

9.0755314 0.00168318
Saturn m2 = 0.000285583733151 −3.0458353 0.00483525

−1.6483708 0.00192462

8.3101420 0.00354178
Uranus m3 = 0.0000437273164546 −16.2901086 0.00137102

−7.2521278 0.00055029

11.4707666 0.00288930
Neptune m4 = 0.0000517759138449 −25.7294829 0.00114527

−10.8169456 0.00039677

−15.5387357 0.00276725
Pluto m5 = 1/(1.3 · 108) −25.2225594 −0.00170702

−3.1902382 −0.00136504
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Fig. 2.4. Solutions of the outer solar system

To this system we apply the explicit and implicit Euler methods with step size
h = 10, the symplectic Euler and the Störmer–Verlet method with much larger
step sizes h = 100 and h = 200, repectively, all over a time period of 200 000
days. The numerical solution (see Fig. 2.4) behaves similarly to that for the Kepler
problem. With the explicit Euler method the planets have increasing energy, they
spiral outwards, Jupiter approaches Saturn which leaves the plane of the two-body
motion. With the implicit Euler method the planets (first Jupiter and then Saturn)
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Canonical Transformations

x = (p, q) z = (P, Q)
Change of variables

(∇xz) J (∇xz)T = Jwhich satisfies

·z = ∇zK(z)Jone has where K(z) = H ∘ x(z)

symplectic condition

Preserves Hamiltonian dynamics in the “latent phase space”



Canonical transformation for 
Moon-Earth-Sun 3-body problem

Charles Delaunay

More than 1800 pages of this, ~20 years of efforts (1846-1867)
↑



Neural Canonical Transformations

p

q

Learn the network parameter and the latent harmonic frequency

H(p, q)
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physical space latent space

li012589/neuralCTLi, Dong, Zhang, LW, PRX ‘20



• Linear transformation: Symplectic Lie algebra  

• Continuous-time flow: Symplectic generating functions 

Symplectic primitives

• Neural point transformation
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P = p (∇Qq)
Q = f(q) invertible  

neural net

Symplectic integrator of neural ODE, Chen et al 1806.07366



https://markovmodel.github.io/mdshare/ALA2/#alanine-dipeptide
Data: 250 ns molecular dynamics simulation of alanine dipeptide at 300 K 

Application: identifying slow modes



More than 3 hours of video …
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Neural canonical transformation decomposes nonlinear slow modes



slow motion of the  
two torsion angles

Dimensional reduction to slow collective variables  
useful for control, prediction, enhanced sampling…

Φ Ψ

Ramachandran  
plot of stable  

conformations

check the paper 1910.00024, PRX ’20  for more examples & applications



“A Hamiltonian Extravaganza”

Equivariant Hamiltonian Flows, 1909.13739

Hamiltonian Generative Network, 1909.13789

Symplectic ODE-Net, 1909.12077

—Danilo J. Rezende@DeepMind 

Neural Canonical Transformation with Symplectic Flows, 1910.00024

Hamiltonian Graph Networks with ODE Integrators, 1909.12790

Symplectic RNN, 1909.13334

Sep 26

Sep 27

Sep 29

Sep 30

http://tiny.cc/hgn 

Sep 25 ICLR 2020 paper submission deadline 

See also Bondesan & Lamacraft, Learning Symmetries of Classical Integrable Systems,1906.04645



Lattice field theoryMolecular simulation

Although no reference for this free-energy dif-
ference in the given simulationmodel is known,
the temperature profile admits basic consistency
checks: The x-ray structure is identified as the
most stable structure at temperatures below
330 K. The internal energy and entropy terms of
the free-energy difference (Eq. 1) are both positive
across all temperatures. Therefore, the free-energy
decreases at high temperatures as the entropic

stabilization becomes stronger. A higher configu-
rational entropy of the “O” state is consistent with
its more open loop structure (compare Fig. 5, G
and H) and the higher degree of fluctuations in
the “O” state observed by the analysis in (30).

Discussion and conclusion

Boltzmann generators can overcome rare event-
sampling problems in many-body systems by

generating independent samples from different
metastable states in one shot. We have demon-
strated this for dense and unstructured many-
body systems with up to 892 atoms (over 2600
dimensions) that are placed simultaneously, with
most samples having globally and locally valid
structures and potential energies in the range of
the equilibrium distribution. In contrast to other
generative neural networks, Boltzmann generators

Noé et al., Science 365, eaaw1147 (2019) 6 September 2019 7 of 11

Fig. 5. One-shot sampling of all-atom structures in different
conformations of the BPTI protein. (A) Boltzmann generator for
macromolecules: Backbone atoms are whitened using PCA; side-chain
atoms are described in normalized internal coordinates (crds). (B) BPTI
x-ray crystal structure (PDB: 5PTI). Cysteine disulfide bridges and
aromatic residues are shown for orientation. (C) One-shot Boltzmann
generator sample of all 892 atoms (2670 dimensions) of the BPTI
protein similar to the x-ray structure. (D) Potential energy distribution
from MD simulation (gray) and Boltzmann generator one-shot samples

(blue). (E) Distribution of bonds and angles compared between
MD simulation (black) and Boltzmann generator (blue).
(F) Representative snapshots of four clusters of structures
generated with the Boltzmann generator. Backbone root mean
square deviation from the x-ray structure is given below the
structure (in angstroms). Marked are the x-ray–like structure
“X” and the open structure “O.” (G and H) Magnification of the
most variable parts of the Boltzmann-generated samples from the
“X” and “O” states. Side chains are shown in atomistic resolution.
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Noe et al, Science ‘19 Kanwar et al, PRL ‘20

Other scientific applications of flow

Gravitational wave detection

Green et al, MLST ‘21



Research questions   
on flow for science



𝒯(g z) = g𝒯(z)

z Normalizing   
Flow

x = 𝒯(z)

Spatial symmetries, permutation symmetries, gauge symmetries…

Equivariance

Symmetries

ρ(g x) = ρ(x)
Invariance



Flow on manifolds

flow

Figure 4: Density on a 2-dimensional sphere formed by mapping the sphere to R
2, trans-

forming the density there, and mapping R
2 back to the sphere.

points x 2 R
M on the manifold using coordinates u 2 R

D. The map T induces a metric
G(u) on the tangent space of X at x = T (u), given by (Kobayashi and Nomizu, 1963):

G(u) = JT (u)
>JT (u). (103)

As a result, an infinitesimal volume on X is given by d⌫(x) =
p
detG(u) du. A formula

relating the density on X to that on the Euclidean space R
D can be derived from the

conservation of measure (eq. 87) by setting U = R
D, taking dµ(u) to be the Lebesgue

measure on R
D, and reparameterizing d⌫(x) =

p
detG(u) du, which yields:

Z

!
pu(u) du =

Z

!
px(T (u))

p
detG(u) du. (104)

Since the above must be true for any ! ✓ R
D, it follows that:

pu(u) = px(T (u))
p
detG(u), (105)

which gives the density on R
D as a function of the density on the manifold. If we restrict

the range of T to X , we can define the inverse mapping T�1 : X ! R
D and then use it to

obtain the density on the manifold:

px(x) = pu
�
T�1(x)

� ⇥
detG

�
T�1(x)

�⇤�1/2
. (106)

The usual density-transformation formula for flows on R
D is a particular case of eq. 106.

Taking X = R
D and M = D, the Jacobian JT (u) becomes D ⇥ D, and the infinitesimal

volume on X simplifies to:

d⌫(x) =
p
(det JT (u))2 du = |det JT (u)| du, (107)

which retrieves the standard flow on R
D.

Using the above approach, we can define flows for which both U and X are D-dimensional
Riemannian manifolds. We start from a base density defined on a manifold U , transform
it to R

D using the inverse embedding map for U , perform any number of standard flow
steps on R

D, and finally transform the resulting density on the target manifold X using

36

Periodic variables, gauge fields, …

Gemici et al 1611.02304, Rezende et al, 2002.02428, Boyda et al, 2008.05456
Neural ODE on manifolds, Falorsi et al, 2006.06663, Lou et al, 2006.10254, Mathieu et al, 2006.10605



Obstructions

Dupont et al 1904.01681, Cornish et al, 1909.13833,  
Zhang et al, 1907.12998, Zhong et al, 2006.00392, Ve ́rine et al, 2107.07232

Regular Homotopy Classes of Surfaces

(Discrete theorem...?)



Mix with other approaches

Kingma et al, 1606.04934,…
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Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.

The flow consists of a chain of T of the following transformations:

zt = µt + �t � zt�1 (10)

where at the t-th step of the flow, we use a different autoregressive neural network with inputs zt�1

and h, and outputs µt and �t. The neural network is structured to be autoregressive w.r.t. zt�1, such
that for any choice of its parameters, the Jacobians dµt

dzt�1
and d�t

dzt�1
are triangular with zeros on the

diagonal. As a result, dzt
dzt�1

is triangular with �t on the diagonal, with determinant
QD

i=1 �t,i. (Note
that the Jacobian w.r.t. h does not have constraints.) Following eq. (5), the density under the final
iterate is:

log q(zT |x) = �
DX

i=1

 
1
2✏

2
i +

1
2 log(2⇡) +

TX

t=0

log �t,i

!
(11)

The flexibility of the distribution of the final iterate zT , and its ability to closely fit to the true posterior,
increases with the expressivity of the autoregressive models and the depth of the chain. See figure 2
for an illustration.

A numerically stable version, inspired by the LSTM-type update, is where we let the autoregressive
network output [mt, st], two unconstrained real-valued vectors:

[mt, st] AutoregressiveNN[t](zt,h;✓) (12)

and compute zt as:

�t = sigmoid(st) (13)
zt = �t � zt�1 + (1� �t)�mt (14)

This version is shown in algorithm 1. Note that this is just a particular version of the update of
eq. (10), so the simple computation of the final log-density of eq. (11) still applies.

We found it beneficial for results to parameterize or initialize the parameters of each
AutoregressiveNN[t] such that its outputs st are, before optimization, sufficiently positive, such as
close to +1 or +2. This leads to an initial behaviour that updates z only slightly with each step of IAF.
Such a parameterization is known as a ’forget gate bias’ in LSTMs, as investigated by Jozefowicz
et al. (2015).

Perhaps the simplest special version of IAF is one with a simple step, and a linear autoregressive
model. This transforms a Gaussian variable with diagonal covariance, to one with linear dependencies,
i.e. a Gaussian distribution with full covariance. See appendix A for an explanation.

Autoregressive neural networks form a rich family of nonlinear transformations for IAF. For non-
convolutional models, we use the family of masked autoregressive networks introduced in (Germain
et al., 2015) for the autoregressive neural networks. For CIFAR-10 experiments, which benefits more
from scaling to high dimensional latent space, we use the family of convolutional autoregressive
autoencoders introduced by (van den Oord et al., 2016b,c).

We found that results improved when reversing the ordering of the variables after each step in the IAF
chain. This is a volume-preserving transformation, so the simple form of eq. (11) remains unchanged.

5

Levy et al, 1711.09268, Wu et al 2002.06707, … 

a

b

c

Figure 1: Deterministic versus stochastic normalizing flow for the double well. Red arrows
indicate deterministic transformations, blue arrows indicate stochastic dynamics. a) 3 RealNVP
blocks (2 layers each). b) Same with 20 BD steps before or after RealNVP blocks. c) Unbiased
sample from true distribution.
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Figure 2: Schematic for Stochastic Normalizing Flow (SNF). An SNF transforms a tractable prior
µZ(z) / exp(�u0(z)) to a complicated target distribution µX(x) / exp(�u1(x)) by a sequence of
deterministic invertible transformations (flows, grey boxes) and stochastic dynamics (sample, ochre)
that sample with respect to a guiding potential u�(x). SNFs can be trained and run in forward mode
(black) and reverse mode (blue).

Contributions. We show that NFs can be interwoven with stochastic sampling blocks into arbitrary
sequences, that together overcome topological constraints and improve expressivity over deterministic
flow architectures (Fig. 1a, b). Furthermore, NSFs have improved sampling efficiency over pure
stochastic sampling as the flow’s and sampler’s parameters can be optimized jointly.

Our main result is that NSFs can be trained in a similar fashion as NFs and exact importance weights
for each sample ending in x can be computed, facilitating asymptotically unbiased sampling from the
target density. The approach avoids explicitly computing pX(x) which would require solving the
intractable integral over all stochastic paths ending in x.

We apply the model to the recently introduced problem of asymptotically unbiased sampling of
molecular structures with flows [32] and show that it significantly improves sampling the multi-modal
torsion angle distributions which are the relevant degrees of freedom in the system. We further show
the advantage of the method over pure flow-based sampling / MCMC by quantitative comparison on
benchmark data sets and on sampling from a VAE’s posterior distribution.

Code is available at github.com/noegroup/stochastic_normalizing_flows

2 Stochastic normalizing flows

A SNF is a sequence of T stochastic and deterministic transformations. We sample z = y0 from the
prior µZ , and generate a forward path (y1, . . . ,yT ) resulting in a proposal yT (Fig. 2). Correspond-
ingly, latent space samples can be generated by starting from a sample x = yT and invoking the
backward path (yT�1, . . . ,y0). The conditional forward / backward path probabilities are

Pf (z=y0 ! yT =x) =
T�1Y

t=0

qt(yt ! yt+1), Pb(x=yT ! y0 =z) =
T�1Y

t=0

q̃t(yt+1 ! yt) (8)

3

Flow in variational autoencoder

Combining flow with Monte Carlo sampling



Discrete flows

Tran et al, 1905.10347, Hoogeboom et al, 1905.07376, van den Berg 2006.12459

Figure 1: Left: 3D probability distribution tensor, only nonzero values are indicated with colored
cubes, all empty space is assumed to be filled with zero-valued cubes. Middle left: an example of
an additive transformation conditioned on x3: y1 = x1 + bt1(x3)e, y2 = x2 + bt2(x3)e, y3 = x3.
Middle right: an example of an additive transformation conditioned on x1 and x3: y1 = x1,
y2 = x2 + bt2(x1, x3)e, y3 = x3. Right: a distribution tensor that a single additive transformation of
the form of Eq. (4) cannot generate from the cube on the left.

operator is replaced by the identity function during back propagation. This leads to biased gradient
estimates for the parameters ✓, a topic that we will come back to in section 5.

Tran et al. [52] introduce flows for discrete values that are not required to be ordinal, but which do
have a finite number of possible values: x 2 X = {0, 1, ...,K � 1}d. They introduce a bijector
in the form of a coupling layer with a scale and translation and a modulo operation: [ya,yb] =
[xa, (s✓(xa) � xb + t✓(xa))modK], with � denoting element-wise multiplication. The elements
of the scale s and translation t are assumed to take on values in 1, 2...,K � 1 and 0, 1, ...,K � 1
respectively. The above equation is only invertible when s and K are co-prime, in which case the
modular multiplicative inverse s�1 can be obtained through the extended Euclidean algorithm. Tran
et al. [52] also introduce an autoregressive version, where yi = [si(y<i)xi + t(y<i)]modK.

In practice, each element xi, si and ti for i 2 {1, ..., d} is represented as a one-hot vector. In
order to apply gradient-based methods to optimize the neural network parameters ✓, another form
of a straight-through estimator is used. In the forward pass, the scale and translation are obtained
by taking the argmax over the outputs of a neural net: si = onehot(argmax(�i)), with �i the
first half of the output of a neural network: [�i, ⌧ i] = nn✓(x1). The one-hot translation ti is
obtained similarly from ⌧ i. In the backward pass the non-differential operators are replaced with
si = softmax(�i/T ), where T denotes a temperature parameter that determines how closely the
softmax operator approximates the combined effect of the one-hot and argmax operator.

In summary, the main differences between discrete flows [52] and integer discrete flows [19] are
respectively: i) a finite number of classes versus a countably infinite number of classes, ii) non-ordinal
classes versus ordinal classes, iii) different straight-through estimators that approximate the respective
quantization operators: one-hot quantization versus rounding. The consequence of i) and its influence
on the flexibility to model arbitrary probability distributions is discussed in Section 4. The influence
of quantization operators on optimization for integer discrete flows will be discussed in Section 5.

4 Flexibility of flows for discrete random variables

As discussed by Papamakarios et al. [38], it might seem that normalizing flows for discrete random
variables are not able to model complicated distributions due to their restriction of only being able to
permute the probabilities of the probability distribution tensor. This appears to be in contrast with
many continuous flows that are non-volume preserving such as affine transformations [11], neural
spline flows [14] and Flow++ [17]. In this section we aim to show that flows for discrete random
variables are more flexible than previously claimed. We will do this by starting with an educative
example as proposed by Papamakarios et al. [38].

Consider the case of a two-dimensional random variable x = (x1, x2), with x1, x2 2 {0, 1}, and a
data-distribution given by

px(x1, x2) :

x1\x2 0 1⇣ ⌘
0 0.1 0.3
1 0.2 0.4

. (5)

4

p(x) = p(y = 𝒯(x))
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delineating the absolute indigeneity of amino acids in fossils. 
As AMS techniques are refined to handle smaller samples, it 
may also become possible to date individual amino acid enan-
tiomers by the 14C method. If one enantiomer is entirely derived 
from the other by racemization during diagenesis, the individual 
D- and L-enantiomers for a given amino acid should have 
identical 14C ages. 

Older, more poorly preserved fossils may not always prove 
amenable to the determination of amino acid indigeneity by the 
stable isotope method, as the prospects for complete replace-
ment of indigenous amino acids with non-indigenous amino 
acids increases with time. As non-indigenous amino acids 
undergo racemization, the enantiomers may have identical 
isotopic compositions and still not be related to the original 
organisms. Such a circumstance may, however, become easier 
to recognize as more information becomes available concerning 
the distribution and stable isotopic composition of the amino 
acid constituents of modern representatives of fossil organisms. 
Also, AMS dates on individual amino acid enantiomers may, 
in some cases, help to clarify indigeneity problems, in particular 
when stratigraphic controls can be used to estimate a general 
age range for the fossil in question. 

Finally, the development of techniques for determining the 
stable isotopic composition of amino acid enantiomers may 
enable us to establish whether non-racemic amino acids in some 
carbonaceous meteorites27 are indigenous, or result in part from 
terrestrial contamination. 
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We describe a new learning procedure, back-propagation, for 
networks of neurone-like units. The procedure repeatedly adjusts 
the weights of the connections in the network so as to minimize a 
measure of the difference between the actual output vector of the 
net and the desired output vector. As a result of the weight 
adjustments, internal 'hidden' units which are not part of the input 
or output come to represent important features of the task domain, 
and the regularities in the task are captured by the interactions 
of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as 
the perceptron-convergence procedure1• 

There have been many attempts to design self-organizing 
neural networks. The aim is to find a powerful synaptic 
modification rule that will allow an arbitrarily connected neural 
network to develop an internal structure that is appropriate for 
a particular task domain. The task is specified by giving the 
desired state vector of the output units for each state vector of 
the input units. If the input units are directly connected to the 
output units it is relatively easy to find learning rules that 
iteratively adjust the relative strengths of the connections so as 
to progressively reduce the difference between the actual and 
desired output vectors2

• Learning becomes more interesting but 
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more difficult when we introduce hidden units whose actual or 
desired states are not specified by the task. (In perceptrons, 
there are 'feature analysers' between the input and output that 
are not true hidden units because their input connections are 
fixed by hand, so their states are completely determined by the 
input vector: they do not learn representations.) The learning 
procedure must decide under what circumstances the hidden 
units should be active in order to help achieve the desired 
input-output behaviour. This amounts to deciding what these 
units should represent. We demonstrate that a general purpose 
and relatively simple procedure is powerful enough to construct 
appropriate internal representations. 

The simplest form of the learning procedure is for layered 
networks which have a layer of input units at the bottom; any 
number of intermediate layers; and a layer of output units at 
the top. Connections within a layer or from higher to lower 
layers are forbidden, but connections can skip intermediate 
layers. An input vector is presented to the network by setting 
the states of the input units. Then the states of the units in each 
layer are determined by applying equations (1) and (2) to the 
connections coming from lower layers. All units within a layer 
have their states set in parallel, but different layers have their 
states set sequentially, starting at the bottom and working 
upwards until the states of the output units are determined. 

The total input, xi, to unitj is a linear function of the outputs, 
Yi, of the units that are connected to j and of the weights, wii• 
on these connections 

(1) 

Units can be given biases by introducing an extra input to each 
unit which always has a value of 1. The weight on this extra 
input is called the bias and is equivalent to a threshold of the 
opposite sign. It can be treated just like the other weights. 

A unit has a real-valued output, Yi, which is a non-linear 
function of its total input 

(2) 
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